Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodiv32 Structured version   Visualization version   GIF version

Theorem ablodiv32 28247
 Description: Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablodiv32 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵))

Proof of Theorem ablodiv32
StepHypRef Expression
1 abldiv.1 . . . . 5 𝑋 = ran 𝐺
21ablocom 28240 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐺𝐶) = (𝐶𝐺𝐵))
323adant3r1 1176 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐺𝐶) = (𝐶𝐺𝐵))
43oveq2d 7167 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐺𝐶)) = (𝐴𝐷(𝐶𝐺𝐵)))
5 abldiv.3 . . 3 𝐷 = ( /𝑔𝐺)
61, 5ablodivdiv4 28246 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶)))
7 3ancomb 1093 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴𝑋𝐶𝑋𝐵𝑋))
81, 5ablodivdiv4 28246 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐷𝐶)𝐷𝐵) = (𝐴𝐷(𝐶𝐺𝐵)))
97, 8sylan2b 593 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐷𝐵) = (𝐴𝐷(𝐶𝐺𝐵)))
104, 6, 93eqtr4d 2870 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2106  ran crn 5554  ‘cfv 6351  (class class class)co 7151   /𝑔 cgs 28184  AbelOpcablo 28236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-grpo 28185  df-gid 28186  df-ginv 28187  df-gdiv 28188  df-ablo 28237 This theorem is referenced by:  ablonnncan1  28249
 Copyright terms: Public domain W3C validator