MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodiv32 Structured version   Visualization version   GIF version

Theorem ablodiv32 28503
Description: Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablodiv32 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵))

Proof of Theorem ablodiv32
StepHypRef Expression
1 abldiv.1 . . . . 5 𝑋 = ran 𝐺
21ablocom 28496 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐺𝐶) = (𝐶𝐺𝐵))
323adant3r1 1183 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐺𝐶) = (𝐶𝐺𝐵))
43oveq2d 7199 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷(𝐵𝐺𝐶)) = (𝐴𝐷(𝐶𝐺𝐵)))
5 abldiv.3 . . 3 𝐷 = ( /𝑔𝐺)
61, 5ablodivdiv4 28502 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = (𝐴𝐷(𝐵𝐺𝐶)))
7 3ancomb 1100 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐴𝑋𝐶𝑋𝐵𝑋))
81, 5ablodivdiv4 28502 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → ((𝐴𝐷𝐶)𝐷𝐵) = (𝐴𝐷(𝐶𝐺𝐵)))
97, 8sylan2b 597 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶)𝐷𝐵) = (𝐴𝐷(𝐶𝐺𝐵)))
104, 6, 93eqtr4d 2784 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  ran crn 5536  cfv 6350  (class class class)co 7183   /𝑔 cgs 28440  AbelOpcablo 28492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-1st 7727  df-2nd 7728  df-grpo 28441  df-gid 28442  df-ginv 28443  df-gdiv 28444  df-ablo 28493
This theorem is referenced by:  ablonnncan1  28505
  Copyright terms: Public domain W3C validator