MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablomuldiv Structured version   Visualization version   GIF version

Theorem ablomuldiv 30530
Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablomuldiv ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))

Proof of Theorem ablomuldiv
StepHypRef Expression
1 abldiv.1 . . . . 5 𝑋 = ran 𝐺
21ablocom 30526 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
323adant3r3 1185 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
43oveq1d 7361 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐵𝐺𝐴)𝐷𝐶))
5 3ancoma 1097 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐵𝑋𝐴𝑋𝐶𝑋))
6 ablogrpo 30525 . . . 4 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
7 abldiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
81, 7grpomuldivass 30519 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
96, 8sylan 580 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
105, 9sylan2b 594 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
11 simpr2 1196 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
121, 7grpodivcl 30517 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
136, 12syl3an1 1163 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
14133adant3r2 1184 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ 𝑋)
1511, 14jca 511 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋))
161ablocom 30526 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
17163expb 1120 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
1815, 17syldan 591 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
194, 10, 183eqtrd 2770 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  ran crn 5617  cfv 6481  (class class class)co 7346  GrpOpcgr 30467   /𝑔 cgs 30470  AbelOpcablo 30522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-grpo 30471  df-gid 30472  df-ginv 30473  df-gdiv 30474  df-ablo 30523
This theorem is referenced by:  ablodivdiv  30531  nvaddsub  30633  ablo4pnp  37926
  Copyright terms: Public domain W3C validator