MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablomuldiv Structured version   Visualization version   GIF version

Theorem ablomuldiv 28815
Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablomuldiv ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))

Proof of Theorem ablomuldiv
StepHypRef Expression
1 abldiv.1 . . . . 5 𝑋 = ran 𝐺
21ablocom 28811 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
323adant3r3 1182 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
43oveq1d 7270 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐵𝐺𝐴)𝐷𝐶))
5 3ancoma 1096 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) ↔ (𝐵𝑋𝐴𝑋𝐶𝑋))
6 ablogrpo 28810 . . . 4 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
7 abldiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
81, 7grpomuldivass 28804 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
96, 8sylan 579 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐵𝑋𝐴𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
105, 9sylan2b 593 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶)))
11 simpr2 1193 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
121, 7grpodivcl 28802 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
136, 12syl3an1 1161 . . . . 5 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐷𝐶) ∈ 𝑋)
14133adant3r2 1181 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐶) ∈ 𝑋)
1511, 14jca 511 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋))
161ablocom 28811 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
17163expb 1118 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐵𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
1815, 17syldan 590 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵))
194, 10, 183eqtrd 2782 1 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ran crn 5581  cfv 6418  (class class class)co 7255  GrpOpcgr 28752   /𝑔 cgs 28755  AbelOpcablo 28807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808
This theorem is referenced by:  ablodivdiv  28816  nvaddsub  28918  ablo4pnp  35965
  Copyright terms: Public domain W3C validator