![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablomuldiv | Structured version Visualization version GIF version |
Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abldiv.1 | ⊢ 𝑋 = ran 𝐺 |
abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
ablomuldiv | ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abldiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | ablocom 29796 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
3 | 2 | 3adant3r3 1184 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
4 | 3 | oveq1d 7423 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐵𝐺𝐴)𝐷𝐶)) |
5 | 3ancoma 1098 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) | |
6 | ablogrpo 29795 | . . . 4 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
7 | abldiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
8 | 1, 7 | grpomuldivass 29789 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶))) |
9 | 6, 8 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶))) |
10 | 5, 9 | sylan2b 594 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶))) |
11 | simpr2 1195 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
12 | 1, 7 | grpodivcl 29787 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ 𝑋) |
13 | 6, 12 | syl3an1 1163 | . . . . 5 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ 𝑋) |
14 | 13 | 3adant3r2 1183 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) ∈ 𝑋) |
15 | 11, 14 | jca 512 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) |
16 | 1 | ablocom 29796 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵)) |
17 | 16 | 3expb 1120 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵)) |
18 | 15, 17 | syldan 591 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵)) |
19 | 4, 10, 18 | 3eqtrd 2776 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ran crn 5677 ‘cfv 6543 (class class class)co 7408 GrpOpcgr 29737 /𝑔 cgs 29740 AbelOpcablo 29792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-grpo 29741 df-gid 29742 df-ginv 29743 df-gdiv 29744 df-ablo 29793 |
This theorem is referenced by: ablodivdiv 29801 nvaddsub 29903 ablo4pnp 36743 |
Copyright terms: Public domain | W3C validator |