Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablomuldiv | Structured version Visualization version GIF version |
Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abldiv.1 | ⊢ 𝑋 = ran 𝐺 |
abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
ablomuldiv | ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abldiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | ablocom 28918 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
3 | 2 | 3adant3r3 1183 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) |
4 | 3 | oveq1d 7282 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐵𝐺𝐴)𝐷𝐶)) |
5 | 3ancoma 1097 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) | |
6 | ablogrpo 28917 | . . . 4 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
7 | abldiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
8 | 1, 7 | grpomuldivass 28911 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶))) |
9 | 6, 8 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶))) |
10 | 5, 9 | sylan2b 594 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝐺𝐴)𝐷𝐶) = (𝐵𝐺(𝐴𝐷𝐶))) |
11 | simpr2 1194 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
12 | 1, 7 | grpodivcl 28909 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ 𝑋) |
13 | 6, 12 | syl3an1 1162 | . . . . 5 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴𝐷𝐶) ∈ 𝑋) |
14 | 13 | 3adant3r2 1182 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐶) ∈ 𝑋) |
15 | 11, 14 | jca 512 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) |
16 | 1 | ablocom 28918 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵)) |
17 | 16 | 3expb 1119 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐶) ∈ 𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵)) |
18 | 15, 17 | syldan 591 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐺(𝐴𝐷𝐶)) = ((𝐴𝐷𝐶)𝐺𝐵)) |
19 | 4, 10, 18 | 3eqtrd 2782 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐷𝐶) = ((𝐴𝐷𝐶)𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ran crn 5585 ‘cfv 6426 (class class class)co 7267 GrpOpcgr 28859 /𝑔 cgs 28862 AbelOpcablo 28914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-1st 7820 df-2nd 7821 df-grpo 28863 df-gid 28864 df-ginv 28865 df-gdiv 28866 df-ablo 28915 |
This theorem is referenced by: ablodivdiv 28923 nvaddsub 29025 ablo4pnp 36046 |
Copyright terms: Public domain | W3C validator |