| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7691 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 2 | 1 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 × cxp 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-opab 5158 df-xp 5627 df-rel 5628 |
| This theorem is referenced by: resiexg 7850 erex 8654 hartogslem2 9438 harwdom 9486 dfac8b 9931 ac10ct 9934 canthwe 10551 cicer 17717 ssclem 17730 ipolerval 18442 dfrngc2 20547 dfringc2 20576 rngcresringcat 20588 mat0op 22337 matecl 22343 matlmod 22347 mattposvs 22373 ustval 24121 isust 24122 restutopopn 24156 ressuss 24180 ispsmet 24222 ismet 24241 isxmet 24242 satef 35483 satefvfmla0 35485 satefvfmla1 35492 fin2so 37670 rtrclexlem 43736 isclintop 48334 isassintop 48337 rngccofvalALTV 48397 ringccofvalALTV 48431 2arymaptf 48780 relcic 49173 |
| Copyright terms: Public domain | W3C validator |