| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7744 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 2 | 1 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: resiexg 7908 erex 8743 hartogslem2 9557 harwdom 9605 dfac8b 10045 ac10ct 10048 canthwe 10665 cicer 17819 ssclem 17832 ipolerval 18542 dfrngc2 20588 dfringc2 20617 rngcresringcat 20629 mat0op 22357 matecl 22363 matlmod 22367 mattposvs 22393 ustval 24141 isust 24142 restutopopn 24177 ressuss 24201 ispsmet 24243 ismet 24262 isxmet 24263 satef 35438 satefvfmla0 35440 satefvfmla1 35447 fin2so 37631 rtrclexlem 43640 isclintop 48182 isassintop 48185 rngccofvalALTV 48245 ringccofvalALTV 48279 2arymaptf 48632 relcic 49012 |
| Copyright terms: Public domain | W3C validator |