![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version |
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7785 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
2 | 1 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: resiexg 7952 erex 8787 hartogslem2 9612 harwdom 9660 dfac8b 10100 ac10ct 10103 canthwe 10720 cicer 17867 ssclem 17880 ipolerval 18602 dfrngc2 20650 dfringc2 20679 rngcresringcat 20691 mat0op 22446 matecl 22452 matlmod 22456 mattposvs 22482 ustval 24232 isust 24233 restutopopn 24268 ressuss 24292 ispsmet 24335 ismet 24354 isxmet 24355 satef 35384 satefvfmla0 35386 satefvfmla1 35393 fin2so 37567 rtrclexlem 43578 isclintop 47930 isassintop 47933 rngccofvalALTV 47993 ringccofvalALTV 48027 2arymaptf 48386 |
Copyright terms: Public domain | W3C validator |