| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7690 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 2 | 1 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 × cxp 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-opab 5158 df-xp 5629 df-rel 5630 |
| This theorem is referenced by: resiexg 7852 erex 8656 hartogslem2 9454 harwdom 9502 dfac8b 9944 ac10ct 9947 canthwe 10564 cicer 17731 ssclem 17744 ipolerval 18456 dfrngc2 20531 dfringc2 20560 rngcresringcat 20572 mat0op 22322 matecl 22328 matlmod 22332 mattposvs 22358 ustval 24106 isust 24107 restutopopn 24142 ressuss 24166 ispsmet 24208 ismet 24227 isxmet 24228 satef 35391 satefvfmla0 35393 satefvfmla1 35400 fin2so 37589 rtrclexlem 43592 isclintop 48195 isassintop 48198 rngccofvalALTV 48258 ringccofvalALTV 48292 2arymaptf 48641 relcic 49034 |
| Copyright terms: Public domain | W3C validator |