Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version |
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7578 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
2 | 1 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: resiexg 7735 erex 8480 hartogslem2 9232 harwdom 9280 dfac8b 9718 ac10ct 9721 canthwe 10338 cicer 17435 ssclem 17448 ipolerval 18165 mat0op 21476 matecl 21482 matlmod 21486 mattposvs 21512 ustval 23262 isust 23263 restutopopn 23298 ressuss 23322 ispsmet 23365 ismet 23384 isxmet 23385 satef 33278 satefvfmla0 33280 satefvfmla1 33287 fin2so 35691 rtrclexlem 41113 isclintop 45289 isassintop 45292 dfrngc2 45418 rngccofvalALTV 45433 dfringc2 45464 rngcresringcat 45476 ringccofvalALTV 45496 2arymaptf 45886 |
Copyright terms: Public domain | W3C validator |