| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7770 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 2 | 1 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3480 × cxp 5683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-opab 5206 df-xp 5691 df-rel 5692 |
| This theorem is referenced by: resiexg 7934 erex 8769 hartogslem2 9583 harwdom 9631 dfac8b 10071 ac10ct 10074 canthwe 10691 cicer 17850 ssclem 17863 ipolerval 18577 dfrngc2 20628 dfringc2 20657 rngcresringcat 20669 mat0op 22425 matecl 22431 matlmod 22435 mattposvs 22461 ustval 24211 isust 24212 restutopopn 24247 ressuss 24271 ispsmet 24314 ismet 24333 isxmet 24334 satef 35421 satefvfmla0 35423 satefvfmla1 35430 fin2so 37614 rtrclexlem 43629 isclintop 48123 isassintop 48126 rngccofvalALTV 48186 ringccofvalALTV 48220 2arymaptf 48573 |
| Copyright terms: Public domain | W3C validator |