| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version | ||
| Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7729 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
| 2 | 1 | anidms 566 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: resiexg 7891 erex 8698 hartogslem2 9503 harwdom 9551 dfac8b 9991 ac10ct 9994 canthwe 10611 cicer 17775 ssclem 17788 ipolerval 18498 dfrngc2 20544 dfringc2 20573 rngcresringcat 20585 mat0op 22313 matecl 22319 matlmod 22323 mattposvs 22349 ustval 24097 isust 24098 restutopopn 24133 ressuss 24157 ispsmet 24199 ismet 24218 isxmet 24219 satef 35410 satefvfmla0 35412 satefvfmla1 35419 fin2so 37608 rtrclexlem 43612 isclintop 48199 isassintop 48202 rngccofvalALTV 48262 ringccofvalALTV 48296 2arymaptf 48645 relcic 49038 |
| Copyright terms: Public domain | W3C validator |