Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqxpexg | Structured version Visualization version GIF version |
Description: The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.) |
Ref | Expression |
---|---|
sqxpexg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7600 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
2 | 1 | anidms 567 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: resiexg 7761 erex 8522 hartogslem2 9302 harwdom 9350 dfac8b 9787 ac10ct 9790 canthwe 10407 cicer 17518 ssclem 17531 ipolerval 18250 mat0op 21568 matecl 21574 matlmod 21578 mattposvs 21604 ustval 23354 isust 23355 restutopopn 23390 ressuss 23414 ispsmet 23457 ismet 23476 isxmet 23477 satef 33378 satefvfmla0 33380 satefvfmla1 33387 fin2so 35764 rtrclexlem 41224 isclintop 45401 isassintop 45404 dfrngc2 45530 rngccofvalALTV 45545 dfringc2 45576 rngcresringcat 45588 ringccofvalALTV 45608 2arymaptf 45998 |
Copyright terms: Public domain | W3C validator |