Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlle0 Structured version   Visualization version   GIF version

Theorem atlle0 36435
Description: An element less than or equal to zero equals zero. (chle0 29214 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atl0le.b 𝐵 = (Base‘𝐾)
atl0le.l = (le‘𝐾)
atl0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atlle0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))

Proof of Theorem atlle0
StepHypRef Expression
1 atl0le.b . . . 4 𝐵 = (Base‘𝐾)
2 atl0le.l . . . 4 = (le‘𝐾)
3 atl0le.z . . . 4 0 = (0.‘𝐾)
41, 2, 3atl0le 36434 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)
54biantrud 534 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋 0 ↔ (𝑋 00 𝑋)))
6 atlpos 36431 . . . 4 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
76adantr 483 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
8 simpr 487 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
91, 3atl0cl 36433 . . . 4 (𝐾 ∈ AtLat → 0𝐵)
109adantr 483 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0𝐵)
111, 2posasymb 17556 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵0𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
127, 8, 10, 11syl3anc 1367 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
135, 12bitrd 281 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  Basecbs 16477  lecple 16566  Posetcpo 17544  0.cp0 17641  AtLatcal 36394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-proset 17532  df-poset 17550  df-glb 17579  df-p0 17643  df-lat 17650  df-atl 36428
This theorem is referenced by:  dia0  38182
  Copyright terms: Public domain W3C validator