Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlle0 | Structured version Visualization version GIF version |
Description: An element less than or equal to zero equals zero. (chle0 29914 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atl0le.b | ⊢ 𝐵 = (Base‘𝐾) |
atl0le.l | ⊢ ≤ = (le‘𝐾) |
atl0le.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
atlle0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atl0le.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | atl0le.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | atl0le 37522 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
5 | 4 | biantrud 532 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ (𝑋 ≤ 0 ∧ 0 ≤ 𝑋))) |
6 | atlpos 37519 | . . . 4 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
8 | simpr 485 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 1, 3 | atl0cl 37521 | . . . 4 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
10 | 9 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | 1, 2 | posasymb 18107 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
12 | 7, 8, 10, 11 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
13 | 5, 12 | bitrd 278 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 class class class wbr 5087 ‘cfv 6465 Basecbs 16982 lecple 17039 Posetcpo 18095 0.cp0 18211 AtLatcal 37482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-proset 18083 df-poset 18101 df-glb 18135 df-p0 18213 df-lat 18220 df-atl 37516 |
This theorem is referenced by: dia0 39271 |
Copyright terms: Public domain | W3C validator |