Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlle0 Structured version   Visualization version   GIF version

Theorem atlle0 37319
Description: An element less than or equal to zero equals zero. (chle0 29805 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atl0le.b 𝐵 = (Base‘𝐾)
atl0le.l = (le‘𝐾)
atl0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atlle0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))

Proof of Theorem atlle0
StepHypRef Expression
1 atl0le.b . . . 4 𝐵 = (Base‘𝐾)
2 atl0le.l . . . 4 = (le‘𝐾)
3 atl0le.z . . . 4 0 = (0.‘𝐾)
41, 2, 3atl0le 37318 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)
54biantrud 532 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋 0 ↔ (𝑋 00 𝑋)))
6 atlpos 37315 . . . 4 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
76adantr 481 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
8 simpr 485 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
91, 3atl0cl 37317 . . . 4 (𝐾 ∈ AtLat → 0𝐵)
109adantr 481 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0𝐵)
111, 2posasymb 18037 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵0𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
127, 8, 10, 11syl3anc 1370 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
135, 12bitrd 278 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  0.cp0 18141  AtLatcal 37278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-proset 18013  df-poset 18031  df-glb 18065  df-p0 18143  df-lat 18150  df-atl 37312
This theorem is referenced by:  dia0  39066
  Copyright terms: Public domain W3C validator