![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlle0 | Structured version Visualization version GIF version |
Description: An element less than or equal to zero equals zero. (chle0 28874 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atl0le.b | ⊢ 𝐵 = (Base‘𝐾) |
atl0le.l | ⊢ ≤ = (le‘𝐾) |
atl0le.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
atlle0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atl0le.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | atl0le.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | atl0le 35460 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
5 | 4 | biantrud 527 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ (𝑋 ≤ 0 ∧ 0 ≤ 𝑋))) |
6 | atlpos 35457 | . . . 4 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
7 | 6 | adantr 474 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
8 | simpr 479 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 1, 3 | atl0cl 35459 | . . . 4 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
10 | 9 | adantr 474 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | 1, 2 | posasymb 17338 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
12 | 7, 8, 10, 11 | syl3anc 1439 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
13 | 5, 12 | bitrd 271 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 ‘cfv 6135 Basecbs 16255 lecple 16345 Posetcpo 17326 0.cp0 17423 AtLatcal 35420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-proset 17314 df-poset 17332 df-glb 17361 df-p0 17425 df-lat 17432 df-atl 35454 |
This theorem is referenced by: dia0 37208 |
Copyright terms: Public domain | W3C validator |