| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnle0 | Structured version Visualization version GIF version | ||
| Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| atnle0.l | ⊢ ≤ = (le‘𝐾) |
| atnle0.z | ⊢ 0 = (0.‘𝐾) |
| atnle0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnle0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39319 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2735 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atnle0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 3, 4 | atl0cl 39321 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
| 7 | atnle0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 3, 7 | atbase 39307 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 10 | eqid 2735 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 11 | 4, 10, 7 | atcvr0 39306 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 12 | atnle0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 13 | 3, 12, 10 | cvrnle 39298 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 ≤ 0 ) |
| 14 | 2, 6, 9, 11, 13 | syl31anc 1375 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 Posetcpo 18319 0.cp0 18433 ⋖ ccvr 39280 Atomscatm 39281 AtLatcal 39282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-proset 18306 df-poset 18325 df-plt 18340 df-glb 18357 df-p0 18435 df-lat 18442 df-covers 39284 df-ats 39285 df-atl 39316 |
| This theorem is referenced by: pmap0 39784 trlnle 40205 cdlemg27b 40715 |
| Copyright terms: Public domain | W3C validator |