Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle0 Structured version   Visualization version   GIF version

Theorem atnle0 39327
Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
atnle0.l = (le‘𝐾)
atnle0.z 0 = (0.‘𝐾)
atnle0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnle0 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 0 )

Proof of Theorem atnle0
StepHypRef Expression
1 atlpos 39319 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
21adantr 480 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝐾 ∈ Poset)
3 eqid 2735 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 atnle0.z . . . 4 0 = (0.‘𝐾)
53, 4atl0cl 39321 . . 3 (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾))
65adantr 480 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ∈ (Base‘𝐾))
7 atnle0.a . . . 4 𝐴 = (Atoms‘𝐾)
83, 7atbase 39307 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
98adantl 481 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ∈ (Base‘𝐾))
10 eqid 2735 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
114, 10, 7atcvr0 39306 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
12 atnle0.l . . 3 = (le‘𝐾)
133, 12, 10cvrnle 39298 . 2 (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 0 )
142, 6, 9, 11, 13syl31anc 1375 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278  Posetcpo 18319  0.cp0 18433  ccvr 39280  Atomscatm 39281  AtLatcal 39282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-proset 18306  df-poset 18325  df-plt 18340  df-glb 18357  df-p0 18435  df-lat 18442  df-covers 39284  df-ats 39285  df-atl 39316
This theorem is referenced by:  pmap0  39784  trlnle  40205  cdlemg27b  40715
  Copyright terms: Public domain W3C validator