Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atnle0 | Structured version Visualization version GIF version |
Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
Ref | Expression |
---|---|
atnle0.l | ⊢ ≤ = (le‘𝐾) |
atnle0.z | ⊢ 0 = (0.‘𝐾) |
atnle0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atnle0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlpos 37242 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | atnle0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
5 | 3, 4 | atl0cl 37244 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
7 | atnle0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 3, 7 | atbase 37230 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
9 | 8 | adantl 481 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
10 | eqid 2738 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
11 | 4, 10, 7 | atcvr0 37229 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
12 | atnle0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
13 | 3, 12, 10 | cvrnle 37221 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 ≤ 0 ) |
14 | 2, 6, 9, 11, 13 | syl31anc 1371 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 0.cp0 18056 ⋖ ccvr 37203 Atomscatm 37204 AtLatcal 37205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-proset 17928 df-poset 17946 df-plt 17963 df-glb 17980 df-p0 18058 df-lat 18065 df-covers 37207 df-ats 37208 df-atl 37239 |
This theorem is referenced by: pmap0 37706 trlnle 38127 cdlemg27b 38637 |
Copyright terms: Public domain | W3C validator |