| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnle0 | Structured version Visualization version GIF version | ||
| Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| atnle0.l | ⊢ ≤ = (le‘𝐾) |
| atnle0.z | ⊢ 0 = (0.‘𝐾) |
| atnle0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnle0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39301 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atnle0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 3, 4 | atl0cl 39303 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
| 7 | atnle0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 3, 7 | atbase 39289 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 10 | eqid 2730 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 11 | 4, 10, 7 | atcvr0 39288 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 12 | atnle0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 13 | 3, 12, 10 | cvrnle 39280 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 ≤ 0 ) |
| 14 | 2, 6, 9, 11, 13 | syl31anc 1375 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 0.cp0 18389 ⋖ ccvr 39262 Atomscatm 39263 AtLatcal 39264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-proset 18262 df-poset 18281 df-plt 18296 df-glb 18313 df-p0 18391 df-lat 18398 df-covers 39266 df-ats 39267 df-atl 39298 |
| This theorem is referenced by: pmap0 39766 trlnle 40187 cdlemg27b 40697 |
| Copyright terms: Public domain | W3C validator |