Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle0 Structured version   Visualization version   GIF version

Theorem atnle0 36598
 Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
atnle0.l = (le‘𝐾)
atnle0.z 0 = (0.‘𝐾)
atnle0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnle0 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 0 )

Proof of Theorem atnle0
StepHypRef Expression
1 atlpos 36590 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
21adantr 484 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝐾 ∈ Poset)
3 eqid 2801 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 atnle0.z . . . 4 0 = (0.‘𝐾)
53, 4atl0cl 36592 . . 3 (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾))
65adantr 484 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ∈ (Base‘𝐾))
7 atnle0.a . . . 4 𝐴 = (Atoms‘𝐾)
83, 7atbase 36578 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
98adantl 485 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ∈ (Base‘𝐾))
10 eqid 2801 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
114, 10, 7atcvr0 36577 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
12 atnle0.l . . 3 = (le‘𝐾)
133, 12, 10cvrnle 36569 . 2 (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 0 )
142, 6, 9, 11, 13syl31anc 1370 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 0 )
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   class class class wbr 5033  ‘cfv 6328  Basecbs 16478  lecple 16567  Posetcpo 17545  0.cp0 17642   ⋖ ccvr 36551  Atomscatm 36552  AtLatcal 36553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-proset 17533  df-poset 17551  df-plt 17563  df-glb 17580  df-p0 17644  df-lat 17651  df-covers 36555  df-ats 36556  df-atl 36587 This theorem is referenced by:  pmap0  37054  trlnle  37475  cdlemg27b  37985
 Copyright terms: Public domain W3C validator