| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnle0 | Structured version Visualization version GIF version | ||
| Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| atnle0.l | ⊢ ≤ = (le‘𝐾) |
| atnle0.z | ⊢ 0 = (0.‘𝐾) |
| atnle0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnle0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39277 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atnle0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 3, 4 | atl0cl 39279 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
| 7 | atnle0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 3, 7 | atbase 39265 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 10 | eqid 2734 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 11 | 4, 10, 7 | atcvr0 39264 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 12 | atnle0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 13 | 3, 12, 10 | cvrnle 39256 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 ≤ 0 ) |
| 14 | 2, 6, 9, 11, 13 | syl31anc 1374 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 Basecbs 17230 lecple 17281 Posetcpo 18324 0.cp0 18438 ⋖ ccvr 39238 Atomscatm 39239 AtLatcal 39240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-proset 18311 df-poset 18330 df-plt 18345 df-glb 18362 df-p0 18440 df-lat 18447 df-covers 39242 df-ats 39243 df-atl 39274 |
| This theorem is referenced by: pmap0 39742 trlnle 40163 cdlemg27b 40673 |
| Copyright terms: Public domain | W3C validator |