Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atnle0 Structured version   Visualization version   GIF version

Theorem atnle0 39356
Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.)
Hypotheses
Ref Expression
atnle0.l = (le‘𝐾)
atnle0.z 0 = (0.‘𝐾)
atnle0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atnle0 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 0 )

Proof of Theorem atnle0
StepHypRef Expression
1 atlpos 39348 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
21adantr 480 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝐾 ∈ Poset)
3 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 atnle0.z . . . 4 0 = (0.‘𝐾)
53, 4atl0cl 39350 . . 3 (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾))
65adantr 480 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ∈ (Base‘𝐾))
7 atnle0.a . . . 4 𝐴 = (Atoms‘𝐾)
83, 7atbase 39336 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
98adantl 481 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 𝑃 ∈ (Base‘𝐾))
10 eqid 2731 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
114, 10, 7atcvr0 39335 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
12 atnle0.l . . 3 = (le‘𝐾)
133, 12, 10cvrnle 39327 . 2 (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 0 )
142, 6, 9, 11, 13syl31anc 1375 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → ¬ 𝑃 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  0.cp0 18327  ccvr 39309  Atomscatm 39310  AtLatcal 39311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-proset 18200  df-poset 18219  df-plt 18234  df-glb 18251  df-p0 18329  df-lat 18338  df-covers 39313  df-ats 39314  df-atl 39345
This theorem is referenced by:  pmap0  39812  trlnle  40233  cdlemg27b  40743
  Copyright terms: Public domain W3C validator