| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atnle0 | Structured version Visualization version GIF version | ||
| Description: An atom is not less than or equal to zero. (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| atnle0.l | ⊢ ≤ = (le‘𝐾) |
| atnle0.z | ⊢ 0 = (0.‘𝐾) |
| atnle0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atnle0 | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39267 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atnle0.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 5 | 3, 4 | atl0cl 39269 | . . 3 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ∈ (Base‘𝐾)) |
| 7 | atnle0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 8 | 3, 7 | atbase 39255 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 10 | eqid 2729 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 11 | 4, 10, 7 | atcvr0 39254 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 12 | atnle0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 13 | 3, 12, 10 | cvrnle 39246 | . 2 ⊢ (((𝐾 ∈ Poset ∧ 0 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) ∧ 0 ( ⋖ ‘𝐾)𝑃) → ¬ 𝑃 ≤ 0 ) |
| 14 | 2, 6, 9, 11, 13 | syl31anc 1375 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 Posetcpo 18244 0.cp0 18358 ⋖ ccvr 39228 Atomscatm 39229 AtLatcal 39230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-proset 18231 df-poset 18250 df-plt 18265 df-glb 18282 df-p0 18360 df-lat 18367 df-covers 39232 df-ats 39233 df-atl 39264 |
| This theorem is referenced by: pmap0 39732 trlnle 40153 cdlemg27b 40663 |
| Copyright terms: Public domain | W3C validator |