| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atlen0 | Structured version Visualization version GIF version | ||
| Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
| Ref | Expression |
|---|---|
| atlen0.b | ⊢ 𝐵 = (Base‘𝐾) |
| atlen0.l | ⊢ ≤ = (le‘𝐾) |
| atlen0.z | ⊢ 0 = (0.‘𝐾) |
| atlen0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atlen0 | ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ AtLat) | |
| 2 | atlen0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | atlen0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 4 | 2, 3 | atl0cl 39321 | . . . . 5 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ∈ 𝐵) |
| 6 | simpl2 1193 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
| 7 | 1, 5, 6 | 3jca 1128 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 8 | simpl3 1194 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
| 9 | atlen0.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | 2, 9 | atbase 39307 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 11 | 8, 10 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
| 12 | eqid 2735 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 13 | 3, 12, 9 | atcvr0 39306 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
| 14 | 1, 8, 13 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ( ⋖ ‘𝐾)𝑃) |
| 15 | eqid 2735 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 16 | 2, 15, 12 | cvrlt 39288 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃) |
| 17 | 1, 5, 11, 14, 16 | syl31anc 1375 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑃) |
| 18 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) | |
| 19 | atlpos 39319 | . . . . . 6 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 20 | 1, 19 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ Poset) |
| 21 | atlen0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 22 | 2, 21, 15 | pltletr 18353 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
| 23 | 20, 5, 11, 6, 22 | syl13anc 1374 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
| 24 | 17, 18, 23 | mp2and 699 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋) |
| 25 | 15 | pltne 18344 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 (lt‘𝐾)𝑋 → 0 ≠ 𝑋)) |
| 26 | 7, 24, 25 | sylc 65 | . 2 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ≠ 𝑋) |
| 27 | 26 | necomd 2987 | 1 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 Posetcpo 18319 ltcplt 18320 0.cp0 18433 ⋖ ccvr 39280 Atomscatm 39281 AtLatcal 39282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-proset 18306 df-poset 18325 df-plt 18340 df-glb 18357 df-p0 18435 df-lat 18442 df-covers 39284 df-ats 39285 df-atl 39316 |
| This theorem is referenced by: ps-2b 39501 2atm 39546 2llnm4 39589 dalem21 39713 dalem54 39745 trlval3 40206 cdlemc5 40214 |
| Copyright terms: Public domain | W3C validator |