Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlen0 Structured version   Visualization version   GIF version

Theorem atlen0 37324
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
atlen0.b 𝐵 = (Base‘𝐾)
atlen0.l = (le‘𝐾)
atlen0.z 0 = (0.‘𝐾)
atlen0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlen0 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )

Proof of Theorem atlen0
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ AtLat)
2 atlen0.b . . . . . 6 𝐵 = (Base‘𝐾)
3 atlen0.z . . . . . 6 0 = (0.‘𝐾)
42, 3atl0cl 37317 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
51, 4syl 17 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝐵)
6 simpl2 1191 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋𝐵)
71, 5, 63jca 1127 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵))
8 simpl3 1192 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐴)
9 atlen0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
102, 9atbase 37303 . . . . . 6 (𝑃𝐴𝑃𝐵)
118, 10syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐵)
12 eqid 2738 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
133, 12, 9atcvr0 37302 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
141, 8, 13syl2anc 584 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 ( ⋖ ‘𝐾)𝑃)
15 eqid 2738 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
162, 15, 12cvrlt 37284 . . . . 5 (((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃)
171, 5, 11, 14, 16syl31anc 1372 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑃)
18 simpr 485 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃 𝑋)
19 atlpos 37315 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
201, 19syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ Poset)
21 atlen0.l . . . . . 6 = (le‘𝐾)
222, 21, 15pltletr 18061 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵)) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2320, 5, 11, 6, 22syl13anc 1371 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2417, 18, 23mp2and 696 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑋)
2515pltne 18052 . . 3 ((𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵) → ( 0 (lt‘𝐾)𝑋0𝑋))
267, 24, 25sylc 65 . 2 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝑋)
2726necomd 2999 1 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Posetcpo 18025  ltcplt 18026  0.cp0 18141  ccvr 37276  Atomscatm 37277  AtLatcal 37278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-proset 18013  df-poset 18031  df-plt 18048  df-glb 18065  df-p0 18143  df-lat 18150  df-covers 37280  df-ats 37281  df-atl 37312
This theorem is referenced by:  ps-2b  37496  2atm  37541  2llnm4  37584  dalem21  37708  dalem54  37740  trlval3  38201  cdlemc5  38209
  Copyright terms: Public domain W3C validator