Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlen0 Structured version   Visualization version   GIF version

Theorem atlen0 37320
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
atlen0.b 𝐵 = (Base‘𝐾)
atlen0.l = (le‘𝐾)
atlen0.z 0 = (0.‘𝐾)
atlen0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlen0 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )

Proof of Theorem atlen0
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ AtLat)
2 atlen0.b . . . . . 6 𝐵 = (Base‘𝐾)
3 atlen0.z . . . . . 6 0 = (0.‘𝐾)
42, 3atl0cl 37313 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
51, 4syl 17 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝐵)
6 simpl2 1191 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋𝐵)
71, 5, 63jca 1127 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵))
8 simpl3 1192 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐴)
9 atlen0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
102, 9atbase 37299 . . . . . 6 (𝑃𝐴𝑃𝐵)
118, 10syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐵)
12 eqid 2740 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
133, 12, 9atcvr0 37298 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
141, 8, 13syl2anc 584 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 ( ⋖ ‘𝐾)𝑃)
15 eqid 2740 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
162, 15, 12cvrlt 37280 . . . . 5 (((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃)
171, 5, 11, 14, 16syl31anc 1372 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑃)
18 simpr 485 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃 𝑋)
19 atlpos 37311 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
201, 19syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ Poset)
21 atlen0.l . . . . . 6 = (le‘𝐾)
222, 21, 15pltletr 18059 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵)) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2320, 5, 11, 6, 22syl13anc 1371 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2417, 18, 23mp2and 696 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑋)
2515pltne 18050 . . 3 ((𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵) → ( 0 (lt‘𝐾)𝑋0𝑋))
267, 24, 25sylc 65 . 2 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝑋)
2726necomd 3001 1 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  cfv 6432  Basecbs 16910  lecple 16967  Posetcpo 18023  ltcplt 18024  0.cp0 18139  ccvr 37272  Atomscatm 37273  AtLatcal 37274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-proset 18011  df-poset 18029  df-plt 18046  df-glb 18063  df-p0 18141  df-lat 18148  df-covers 37276  df-ats 37277  df-atl 37308
This theorem is referenced by:  ps-2b  37492  2atm  37537  2llnm4  37580  dalem21  37704  dalem54  37736  trlval3  38197  cdlemc5  38205
  Copyright terms: Public domain W3C validator