Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlen0 Structured version   Visualization version   GIF version

Theorem atlen0 36433
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
atlen0.b 𝐵 = (Base‘𝐾)
atlen0.l = (le‘𝐾)
atlen0.z 0 = (0.‘𝐾)
atlen0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlen0 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )

Proof of Theorem atlen0
StepHypRef Expression
1 simpl1 1185 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ AtLat)
2 atlen0.b . . . . . 6 𝐵 = (Base‘𝐾)
3 atlen0.z . . . . . 6 0 = (0.‘𝐾)
42, 3atl0cl 36426 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
51, 4syl 17 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝐵)
6 simpl2 1186 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋𝐵)
71, 5, 63jca 1122 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵))
8 simpl3 1187 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐴)
9 atlen0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
102, 9atbase 36412 . . . . . 6 (𝑃𝐴𝑃𝐵)
118, 10syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃𝐵)
12 eqid 2819 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
133, 12, 9atcvr0 36411 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 ( ⋖ ‘𝐾)𝑃)
141, 8, 13syl2anc 586 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 ( ⋖ ‘𝐾)𝑃)
15 eqid 2819 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
162, 15, 12cvrlt 36393 . . . . 5 (((𝐾 ∈ AtLat ∧ 0𝐵𝑃𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃)
171, 5, 11, 14, 16syl31anc 1367 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑃)
18 simpr 487 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑃 𝑋)
19 atlpos 36424 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
201, 19syl 17 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝐾 ∈ Poset)
21 atlen0.l . . . . . 6 = (le‘𝐾)
222, 21, 15pltletr 17573 . . . . 5 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵)) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2320, 5, 11, 6, 22syl13anc 1366 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → (( 0 (lt‘𝐾)𝑃𝑃 𝑋) → 0 (lt‘𝐾)𝑋))
2417, 18, 23mp2and 697 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0 (lt‘𝐾)𝑋)
2515pltne 17564 . . 3 ((𝐾 ∈ AtLat ∧ 0𝐵𝑋𝐵) → ( 0 (lt‘𝐾)𝑋0𝑋))
267, 24, 25sylc 65 . 2 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 0𝑋)
2726necomd 3069 1 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑃 𝑋) → 𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107  wne 3014   class class class wbr 5057  cfv 6348  Basecbs 16475  lecple 16564  Posetcpo 17542  ltcplt 17543  0.cp0 17639  ccvr 36385  Atomscatm 36386  AtLatcal 36387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-proset 17530  df-poset 17548  df-plt 17560  df-glb 17577  df-p0 17641  df-lat 17648  df-covers 36389  df-ats 36390  df-atl 36421
This theorem is referenced by:  ps-2b  36605  2atm  36650  2llnm4  36693  dalem21  36817  dalem54  36849  trlval3  37310  cdlemc5  37318
  Copyright terms: Public domain W3C validator