Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlen0 | Structured version Visualization version GIF version |
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
Ref | Expression |
---|---|
atlen0.b | ⊢ 𝐵 = (Base‘𝐾) |
atlen0.l | ⊢ ≤ = (le‘𝐾) |
atlen0.z | ⊢ 0 = (0.‘𝐾) |
atlen0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlen0 | ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ AtLat) | |
2 | atlen0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | atlen0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | atl0cl 37317 | . . . . 5 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ∈ 𝐵) |
6 | simpl2 1191 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
7 | 1, 5, 6 | 3jca 1127 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
8 | simpl3 1192 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
9 | atlen0.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | 2, 9 | atbase 37303 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
12 | eqid 2738 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
13 | 3, 12, 9 | atcvr0 37302 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
14 | 1, 8, 13 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ( ⋖ ‘𝐾)𝑃) |
15 | eqid 2738 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
16 | 2, 15, 12 | cvrlt 37284 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃) |
17 | 1, 5, 11, 14, 16 | syl31anc 1372 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑃) |
18 | simpr 485 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) | |
19 | atlpos 37315 | . . . . . 6 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
20 | 1, 19 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ Poset) |
21 | atlen0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
22 | 2, 21, 15 | pltletr 18061 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
23 | 20, 5, 11, 6, 22 | syl13anc 1371 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
24 | 17, 18, 23 | mp2and 696 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋) |
25 | 15 | pltne 18052 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 (lt‘𝐾)𝑋 → 0 ≠ 𝑋)) |
26 | 7, 24, 25 | sylc 65 | . 2 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ≠ 𝑋) |
27 | 26 | necomd 2999 | 1 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 Posetcpo 18025 ltcplt 18026 0.cp0 18141 ⋖ ccvr 37276 Atomscatm 37277 AtLatcal 37278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-proset 18013 df-poset 18031 df-plt 18048 df-glb 18065 df-p0 18143 df-lat 18150 df-covers 37280 df-ats 37281 df-atl 37312 |
This theorem is referenced by: ps-2b 37496 2atm 37541 2llnm4 37584 dalem21 37708 dalem54 37740 trlval3 38201 cdlemc5 38209 |
Copyright terms: Public domain | W3C validator |