Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlen0 | Structured version Visualization version GIF version |
Description: A lattice element is nonzero if an atom is under it. (Contributed by NM, 26-May-2012.) |
Ref | Expression |
---|---|
atlen0.b | ⊢ 𝐵 = (Base‘𝐾) |
atlen0.l | ⊢ ≤ = (le‘𝐾) |
atlen0.z | ⊢ 0 = (0.‘𝐾) |
atlen0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlen0 | ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ AtLat) | |
2 | atlen0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | atlen0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
4 | 2, 3 | atl0cl 37313 | . . . . 5 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ∈ 𝐵) |
6 | simpl2 1191 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
7 | 1, 5, 6 | 3jca 1127 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
8 | simpl3 1192 | . . . . . 6 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
9 | atlen0.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | 2, 9 | atbase 37299 | . . . . . 6 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
12 | eqid 2740 | . . . . . . 7 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
13 | 3, 12, 9 | atcvr0 37298 | . . . . . 6 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → 0 ( ⋖ ‘𝐾)𝑃) |
14 | 1, 8, 13 | syl2anc 584 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ( ⋖ ‘𝐾)𝑃) |
15 | eqid 2740 | . . . . . 6 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
16 | 2, 15, 12 | cvrlt 37280 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) ∧ 0 ( ⋖ ‘𝐾)𝑃) → 0 (lt‘𝐾)𝑃) |
17 | 1, 5, 11, 14, 16 | syl31anc 1372 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑃) |
18 | simpr 485 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) | |
19 | atlpos 37311 | . . . . . 6 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
20 | 1, 19 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ Poset) |
21 | atlen0.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
22 | 2, 21, 15 | pltletr 18059 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
23 | 20, 5, 11, 6, 22 | syl13anc 1371 | . . . 4 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → (( 0 (lt‘𝐾)𝑃 ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋)) |
24 | 17, 18, 23 | mp2and 696 | . . 3 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 (lt‘𝐾)𝑋) |
25 | 15 | pltne 18050 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 (lt‘𝐾)𝑋 → 0 ≠ 𝑋)) |
26 | 7, 24, 25 | sylc 65 | . 2 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 0 ≠ 𝑋) |
27 | 26 | necomd 3001 | 1 ⊢ (((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃 ≤ 𝑋) → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 ‘cfv 6432 Basecbs 16910 lecple 16967 Posetcpo 18023 ltcplt 18024 0.cp0 18139 ⋖ ccvr 37272 Atomscatm 37273 AtLatcal 37274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-proset 18011 df-poset 18029 df-plt 18046 df-glb 18063 df-p0 18141 df-lat 18148 df-covers 37276 df-ats 37277 df-atl 37308 |
This theorem is referenced by: ps-2b 37492 2atm 37537 2llnm4 37580 dalem21 37704 dalem54 37736 trlval3 38197 cdlemc5 38205 |
Copyright terms: Public domain | W3C validator |