Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvreq0 Structured version   Visualization version   GIF version

Theorem atcvreq0 39292
Description: An element covered by an atom must be zero. (atcveq0 32310 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atcvreq0.b 𝐵 = (Base‘𝐾)
atcvreq0.l = (le‘𝐾)
atcvreq0.z 0 = (0.‘𝐾)
atcvreq0.c 𝐶 = ( ⋖ ‘𝐾)
atcvreq0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvreq0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))

Proof of Theorem atcvreq0
StepHypRef Expression
1 atcvreq0.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 eqid 2729 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 atcvreq0.z . . . . . . . 8 0 = (0.‘𝐾)
41, 2, 3atl0le 39282 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
543adant3 1132 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 (le‘𝐾)𝑋)
65adantr 480 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 (le‘𝐾)𝑋)
7 atcvreq0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
81, 7atbase 39267 . . . . . 6 (𝑃𝐴𝑃𝐵)
9 eqid 2729 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
10 atcvreq0.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
111, 9, 10cvrlt 39248 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐵) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
128, 11syl3anl3 1416 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
13 atlpos 39279 . . . . . . . 8 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝐾 ∈ Poset)
161, 3atl0cl 39281 . . . . . . . 8 (𝐾 ∈ AtLat → 0𝐵)
17163ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0𝐵)
1817adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0𝐵)
1983ad2ant3 1135 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
2019adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑃𝐵)
21 simpl2 1193 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋𝐵)
223, 10, 7atcvr0 39266 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 𝐶𝑃)
23223adant2 1131 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 𝐶𝑃)
2423adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 𝐶𝑃)
251, 2, 9, 10cvrnbtwn3 39254 . . . . . 6 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
2615, 18, 20, 21, 24, 25syl131anc 1385 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
276, 12, 26mpbi2and 712 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 = 𝑋)
2827eqcomd 2735 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋 = 0 )
2928ex 412 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
30 breq1 5098 . . 3 (𝑋 = 0 → (𝑋𝐶𝑃0 𝐶𝑃))
3123, 30syl5ibrcom 247 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋 = 0𝑋𝐶𝑃))
3229, 31impbid 212 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  Posetcpo 18231  ltcplt 18232  0.cp0 18345  ccvr 39240  Atomscatm 39241  AtLatcal 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-proset 18218  df-poset 18237  df-plt 18252  df-glb 18269  df-p0 18347  df-lat 18356  df-covers 39244  df-ats 39245  df-atl 39276
This theorem is referenced by:  atncvrN  39293  atcvrj0  39407  1cvrjat  39454
  Copyright terms: Public domain W3C validator