Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvreq0 Structured version   Visualization version   GIF version

Theorem atcvreq0 39314
Description: An element covered by an atom must be zero. (atcveq0 32284 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atcvreq0.b 𝐵 = (Base‘𝐾)
atcvreq0.l = (le‘𝐾)
atcvreq0.z 0 = (0.‘𝐾)
atcvreq0.c 𝐶 = ( ⋖ ‘𝐾)
atcvreq0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvreq0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))

Proof of Theorem atcvreq0
StepHypRef Expression
1 atcvreq0.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 eqid 2730 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 atcvreq0.z . . . . . . . 8 0 = (0.‘𝐾)
41, 2, 3atl0le 39304 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
543adant3 1132 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 (le‘𝐾)𝑋)
65adantr 480 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 (le‘𝐾)𝑋)
7 atcvreq0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
81, 7atbase 39289 . . . . . 6 (𝑃𝐴𝑃𝐵)
9 eqid 2730 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
10 atcvreq0.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
111, 9, 10cvrlt 39270 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐵) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
128, 11syl3anl3 1416 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
13 atlpos 39301 . . . . . . . 8 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝐾 ∈ Poset)
161, 3atl0cl 39303 . . . . . . . 8 (𝐾 ∈ AtLat → 0𝐵)
17163ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0𝐵)
1817adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0𝐵)
1983ad2ant3 1135 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
2019adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑃𝐵)
21 simpl2 1193 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋𝐵)
223, 10, 7atcvr0 39288 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 𝐶𝑃)
23223adant2 1131 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 𝐶𝑃)
2423adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 𝐶𝑃)
251, 2, 9, 10cvrnbtwn3 39276 . . . . . 6 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
2615, 18, 20, 21, 24, 25syl131anc 1385 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
276, 12, 26mpbi2and 712 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 = 𝑋)
2827eqcomd 2736 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋 = 0 )
2928ex 412 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
30 breq1 5113 . . 3 (𝑋 = 0 → (𝑋𝐶𝑃0 𝐶𝑃))
3123, 30syl5ibrcom 247 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋 = 0𝑋𝐶𝑃))
3229, 31impbid 212 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  Posetcpo 18275  ltcplt 18276  0.cp0 18389  ccvr 39262  Atomscatm 39263  AtLatcal 39264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-proset 18262  df-poset 18281  df-plt 18296  df-glb 18313  df-p0 18391  df-lat 18398  df-covers 39266  df-ats 39267  df-atl 39298
This theorem is referenced by:  atncvrN  39315  atcvrj0  39429  1cvrjat  39476
  Copyright terms: Public domain W3C validator