Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvreq0 Structured version   Visualization version   GIF version

Theorem atcvreq0 39352
Description: An element covered by an atom must be zero. (atcveq0 32323 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atcvreq0.b 𝐵 = (Base‘𝐾)
atcvreq0.l = (le‘𝐾)
atcvreq0.z 0 = (0.‘𝐾)
atcvreq0.c 𝐶 = ( ⋖ ‘𝐾)
atcvreq0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvreq0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))

Proof of Theorem atcvreq0
StepHypRef Expression
1 atcvreq0.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 eqid 2731 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 atcvreq0.z . . . . . . . 8 0 = (0.‘𝐾)
41, 2, 3atl0le 39342 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
543adant3 1132 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 (le‘𝐾)𝑋)
65adantr 480 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 (le‘𝐾)𝑋)
7 atcvreq0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
81, 7atbase 39327 . . . . . 6 (𝑃𝐴𝑃𝐵)
9 eqid 2731 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
10 atcvreq0.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
111, 9, 10cvrlt 39308 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐵) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
128, 11syl3anl3 1416 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
13 atlpos 39339 . . . . . . . 8 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝐾 ∈ Poset)
161, 3atl0cl 39341 . . . . . . . 8 (𝐾 ∈ AtLat → 0𝐵)
17163ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0𝐵)
1817adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0𝐵)
1983ad2ant3 1135 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
2019adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑃𝐵)
21 simpl2 1193 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋𝐵)
223, 10, 7atcvr0 39326 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 𝐶𝑃)
23223adant2 1131 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 𝐶𝑃)
2423adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 𝐶𝑃)
251, 2, 9, 10cvrnbtwn3 39314 . . . . . 6 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
2615, 18, 20, 21, 24, 25syl131anc 1385 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
276, 12, 26mpbi2and 712 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 = 𝑋)
2827eqcomd 2737 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋 = 0 )
2928ex 412 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
30 breq1 5094 . . 3 (𝑋 = 0 → (𝑋𝐶𝑃0 𝐶𝑃))
3123, 30syl5ibrcom 247 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋 = 0𝑋𝐶𝑃))
3229, 31impbid 212 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  Basecbs 17117  lecple 17165  Posetcpo 18210  ltcplt 18211  0.cp0 18324  ccvr 39300  Atomscatm 39301  AtLatcal 39302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-proset 18197  df-poset 18216  df-plt 18231  df-glb 18248  df-p0 18326  df-lat 18335  df-covers 39304  df-ats 39305  df-atl 39336
This theorem is referenced by:  atncvrN  39353  atcvrj0  39466  1cvrjat  39513
  Copyright terms: Public domain W3C validator