Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcvreq0 Structured version   Visualization version   GIF version

Theorem atcvreq0 39270
Description: An element covered by an atom must be zero. (atcveq0 32380 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
atcvreq0.b 𝐵 = (Base‘𝐾)
atcvreq0.l = (le‘𝐾)
atcvreq0.z 0 = (0.‘𝐾)
atcvreq0.c 𝐶 = ( ⋖ ‘𝐾)
atcvreq0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcvreq0 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))

Proof of Theorem atcvreq0
StepHypRef Expression
1 atcvreq0.b . . . . . . . 8 𝐵 = (Base‘𝐾)
2 eqid 2740 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 atcvreq0.z . . . . . . . 8 0 = (0.‘𝐾)
41, 2, 3atl0le 39260 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 (le‘𝐾)𝑋)
543adant3 1132 . . . . . 6 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 (le‘𝐾)𝑋)
65adantr 480 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 (le‘𝐾)𝑋)
7 atcvreq0.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
81, 7atbase 39245 . . . . . 6 (𝑃𝐴𝑃𝐵)
9 eqid 2740 . . . . . . 7 (lt‘𝐾) = (lt‘𝐾)
10 atcvreq0.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
111, 9, 10cvrlt 39226 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐵) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
128, 11syl3anl3 1414 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋(lt‘𝐾)𝑃)
13 atlpos 39257 . . . . . . . 8 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
14133ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Poset)
1514adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝐾 ∈ Poset)
161, 3atl0cl 39259 . . . . . . . 8 (𝐾 ∈ AtLat → 0𝐵)
17163ad2ant1 1133 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0𝐵)
1817adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0𝐵)
1983ad2ant3 1135 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
2019adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑃𝐵)
21 simpl2 1192 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋𝐵)
223, 10, 7atcvr0 39244 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → 0 𝐶𝑃)
23223adant2 1131 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → 0 𝐶𝑃)
2423adantr 480 . . . . . 6 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 𝐶𝑃)
251, 2, 9, 10cvrnbtwn3 39232 . . . . . 6 ((𝐾 ∈ Poset ∧ ( 0𝐵𝑃𝐵𝑋𝐵) ∧ 0 𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
2615, 18, 20, 21, 24, 25syl131anc 1383 . . . . 5 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → (( 0 (le‘𝐾)𝑋𝑋(lt‘𝐾)𝑃) ↔ 0 = 𝑋))
276, 12, 26mpbi2and 711 . . . 4 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 0 = 𝑋)
2827eqcomd 2746 . . 3 (((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋𝐶𝑃) → 𝑋 = 0 )
2928ex 412 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
30 breq1 5169 . . 3 (𝑋 = 0 → (𝑋𝐶𝑃0 𝐶𝑃))
3123, 30syl5ibrcom 247 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋 = 0𝑋𝐶𝑃))
3229, 31impbid 212 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑃𝐴) → (𝑋𝐶𝑃𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378  0.cp0 18493  ccvr 39218  Atomscatm 39219  AtLatcal 39220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-proset 18365  df-poset 18383  df-plt 18400  df-glb 18417  df-p0 18495  df-lat 18502  df-covers 39222  df-ats 39223  df-atl 39254
This theorem is referenced by:  atncvrN  39271  atcvrj0  39385  1cvrjat  39432
  Copyright terms: Public domain W3C validator