Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version |
Description: If two atoms are comparable, they are equal. (atsseq 30610 analog.) (Contributed by NM, 13-Oct-2011.) |
Ref | Expression |
---|---|
atcmp.l | ⊢ ≤ = (le‘𝐾) |
atcmp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcmp | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlpos 37242 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
2 | 1 | 3ad2ant1 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Poset) |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | atcmp.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atbase 37230 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
6 | 5 | 3ad2ant2 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
7 | 3, 4 | atbase 37230 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
8 | 7 | 3ad2ant3 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ (Base‘𝐾)) |
9 | eqid 2738 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
10 | 3, 9 | atl0cl 37244 | . . 3 ⊢ (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾)) |
11 | 10 | 3ad2ant1 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾) ∈ (Base‘𝐾)) |
12 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
13 | 9, 12, 4 | atcvr0 37229 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
14 | 13 | 3adant3 1130 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
15 | 9, 12, 4 | atcvr0 37229 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
16 | 15 | 3adant2 1129 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
17 | atcmp.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
18 | 3, 17, 12 | cvrcmp 37224 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1386 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Posetcpo 17940 0.cp0 18056 ⋖ ccvr 37203 Atomscatm 37204 AtLatcal 37205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-proset 17928 df-poset 17946 df-plt 17963 df-glb 17980 df-p0 18058 df-lat 18065 df-covers 37207 df-ats 37208 df-atl 37239 |
This theorem is referenced by: atncmp 37253 atnlt 37254 atnle 37258 cvlsupr2 37284 cvratlem 37362 2atjm 37386 atbtwn 37387 2atm 37468 2llnmeqat 37512 dalem25 37639 dalem55 37668 dalem57 37670 snatpsubN 37691 pmapat 37704 2llnma1b 37727 cdlemblem 37734 lhp2at0nle 37976 lhpat3 37987 4atexlemcnd 38013 trlval3 38128 cdlemc5 38136 cdleme3 38178 cdleme7 38190 cdleme11k 38209 cdleme16b 38220 cdleme16e 38223 cdleme16f 38224 cdlemednpq 38240 cdleme20j 38259 cdleme22aa 38280 cdleme22cN 38283 cdleme22d 38284 cdlemf2 38503 cdlemb3 38547 cdlemg12e 38588 cdlemg17dALTN 38605 cdlemg19a 38624 cdlemg27b 38637 cdlemg31d 38641 trlcone 38669 cdlemi 38761 tendotr 38771 cdlemk17 38799 cdlemk52 38895 cdleml1N 38917 dia2dimlem1 39005 dia2dimlem2 39006 dia2dimlem3 39007 |
Copyright terms: Public domain | W3C validator |