Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcmp Structured version   Visualization version   GIF version

Theorem atcmp 39349
Description: If two atoms are comparable, they are equal. (atsseq 32322 analog.) (Contributed by NM, 13-Oct-2011.)
Hypotheses
Ref Expression
atcmp.l = (le‘𝐾)
atcmp.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcmp ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))

Proof of Theorem atcmp
StepHypRef Expression
1 atlpos 39339 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
213ad2ant1 1133 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ Poset)
3 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 atcmp.a . . . 4 𝐴 = (Atoms‘𝐾)
53, 4atbase 39327 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
653ad2ant2 1134 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝑃 ∈ (Base‘𝐾))
73, 4atbase 39327 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
873ad2ant3 1135 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
9 eqid 2731 . . . 4 (0.‘𝐾) = (0.‘𝐾)
103, 9atl0cl 39341 . . 3 (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾))
11103ad2ant1 1133 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾) ∈ (Base‘𝐾))
12 eqid 2731 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
139, 12, 4atcvr0 39326 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
14133adant3 1132 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
159, 12, 4atcvr0 39326 . . 3 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄)
16153adant2 1131 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄)
17 atcmp.l . . 3 = (le‘𝐾)
183, 17, 12cvrcmp 39321 . 2 ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 𝑄𝑃 = 𝑄))
192, 6, 8, 11, 14, 16, 18syl132anc 1390 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  Basecbs 17117  lecple 17165  Posetcpo 18210  0.cp0 18324  ccvr 39300  Atomscatm 39301  AtLatcal 39302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-proset 18197  df-poset 18216  df-plt 18231  df-glb 18248  df-p0 18326  df-lat 18335  df-covers 39304  df-ats 39305  df-atl 39336
This theorem is referenced by:  atncmp  39350  atnlt  39351  atnle  39355  cvlsupr2  39381  cvratlem  39459  2atjm  39483  atbtwn  39484  2atm  39565  2llnmeqat  39609  dalem25  39736  dalem55  39765  dalem57  39767  snatpsubN  39788  pmapat  39801  2llnma1b  39824  cdlemblem  39831  lhp2at0nle  40073  lhpat3  40084  4atexlemcnd  40110  trlval3  40225  cdlemc5  40233  cdleme3  40275  cdleme7  40287  cdleme11k  40306  cdleme16b  40317  cdleme16e  40320  cdleme16f  40321  cdlemednpq  40337  cdleme20j  40356  cdleme22aa  40377  cdleme22cN  40380  cdleme22d  40381  cdlemf2  40600  cdlemb3  40644  cdlemg12e  40685  cdlemg17dALTN  40702  cdlemg19a  40721  cdlemg27b  40734  cdlemg31d  40738  trlcone  40766  cdlemi  40858  tendotr  40868  cdlemk17  40896  cdlemk52  40992  cdleml1N  41014  dia2dimlem1  41102  dia2dimlem2  41103  dia2dimlem3  41104
  Copyright terms: Public domain W3C validator