| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version | ||
| Description: If two atoms are comparable, they are equal. (atsseq 32276 analog.) (Contributed by NM, 13-Oct-2011.) |
| Ref | Expression |
|---|---|
| atcmp.l | ⊢ ≤ = (le‘𝐾) |
| atcmp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atcmp | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39294 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atcmp.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39282 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 7 | 3, 4 | atbase 39282 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 8 | 7 | 3ad2ant3 1135 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ (Base‘𝐾)) |
| 9 | eqid 2729 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 10 | 3, 9 | atl0cl 39296 | . . 3 ⊢ (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 11 | 10 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 12 | eqid 2729 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 13 | 9, 12, 4 | atcvr0 39281 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 15 | 9, 12, 4 | atcvr0 39281 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 17 | atcmp.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 18 | 3, 17, 12 | cvrcmp 39276 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| 19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1390 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 0.cp0 18382 ⋖ ccvr 39255 Atomscatm 39256 AtLatcal 39257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-proset 18255 df-poset 18274 df-plt 18289 df-glb 18306 df-p0 18384 df-lat 18391 df-covers 39259 df-ats 39260 df-atl 39291 |
| This theorem is referenced by: atncmp 39305 atnlt 39306 atnle 39310 cvlsupr2 39336 cvratlem 39415 2atjm 39439 atbtwn 39440 2atm 39521 2llnmeqat 39565 dalem25 39692 dalem55 39721 dalem57 39723 snatpsubN 39744 pmapat 39757 2llnma1b 39780 cdlemblem 39787 lhp2at0nle 40029 lhpat3 40040 4atexlemcnd 40066 trlval3 40181 cdlemc5 40189 cdleme3 40231 cdleme7 40243 cdleme11k 40262 cdleme16b 40273 cdleme16e 40276 cdleme16f 40277 cdlemednpq 40293 cdleme20j 40312 cdleme22aa 40333 cdleme22cN 40336 cdleme22d 40337 cdlemf2 40556 cdlemb3 40600 cdlemg12e 40641 cdlemg17dALTN 40658 cdlemg19a 40677 cdlemg27b 40690 cdlemg31d 40694 trlcone 40722 cdlemi 40814 tendotr 40824 cdlemk17 40852 cdlemk52 40948 cdleml1N 40970 dia2dimlem1 41058 dia2dimlem2 41059 dia2dimlem3 41060 |
| Copyright terms: Public domain | W3C validator |