| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version | ||
| Description: If two atoms are comparable, they are equal. (atsseq 32322 analog.) (Contributed by NM, 13-Oct-2011.) |
| Ref | Expression |
|---|---|
| atcmp.l | ⊢ ≤ = (le‘𝐾) |
| atcmp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atcmp | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39339 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atcmp.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39327 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 7 | 3, 4 | atbase 39327 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 8 | 7 | 3ad2ant3 1135 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ (Base‘𝐾)) |
| 9 | eqid 2731 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 10 | 3, 9 | atl0cl 39341 | . . 3 ⊢ (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 11 | 10 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 12 | eqid 2731 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 13 | 9, 12, 4 | atcvr0 39326 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 15 | 9, 12, 4 | atcvr0 39326 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 17 | atcmp.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 18 | 3, 17, 12 | cvrcmp 39321 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| 19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1390 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 lecple 17165 Posetcpo 18210 0.cp0 18324 ⋖ ccvr 39300 Atomscatm 39301 AtLatcal 39302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-proset 18197 df-poset 18216 df-plt 18231 df-glb 18248 df-p0 18326 df-lat 18335 df-covers 39304 df-ats 39305 df-atl 39336 |
| This theorem is referenced by: atncmp 39350 atnlt 39351 atnle 39355 cvlsupr2 39381 cvratlem 39459 2atjm 39483 atbtwn 39484 2atm 39565 2llnmeqat 39609 dalem25 39736 dalem55 39765 dalem57 39767 snatpsubN 39788 pmapat 39801 2llnma1b 39824 cdlemblem 39831 lhp2at0nle 40073 lhpat3 40084 4atexlemcnd 40110 trlval3 40225 cdlemc5 40233 cdleme3 40275 cdleme7 40287 cdleme11k 40306 cdleme16b 40317 cdleme16e 40320 cdleme16f 40321 cdlemednpq 40337 cdleme20j 40356 cdleme22aa 40377 cdleme22cN 40380 cdleme22d 40381 cdlemf2 40600 cdlemb3 40644 cdlemg12e 40685 cdlemg17dALTN 40702 cdlemg19a 40721 cdlemg27b 40734 cdlemg31d 40738 trlcone 40766 cdlemi 40858 tendotr 40868 cdlemk17 40896 cdlemk52 40992 cdleml1N 41014 dia2dimlem1 41102 dia2dimlem2 41103 dia2dimlem3 41104 |
| Copyright terms: Public domain | W3C validator |