| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version | ||
| Description: If two atoms are comparable, they are equal. (atsseq 32283 analog.) (Contributed by NM, 13-Oct-2011.) |
| Ref | Expression |
|---|---|
| atcmp.l | ⊢ ≤ = (le‘𝐾) |
| atcmp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atcmp | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39301 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atcmp.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39289 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 7 | 3, 4 | atbase 39289 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 8 | 7 | 3ad2ant3 1135 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ (Base‘𝐾)) |
| 9 | eqid 2730 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 10 | 3, 9 | atl0cl 39303 | . . 3 ⊢ (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 11 | 10 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 12 | eqid 2730 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 13 | 9, 12, 4 | atcvr0 39288 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 15 | 9, 12, 4 | atcvr0 39288 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 17 | atcmp.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 18 | 3, 17, 12 | cvrcmp 39283 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| 19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1390 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 0.cp0 18389 ⋖ ccvr 39262 Atomscatm 39263 AtLatcal 39264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-proset 18262 df-poset 18281 df-plt 18296 df-glb 18313 df-p0 18391 df-lat 18398 df-covers 39266 df-ats 39267 df-atl 39298 |
| This theorem is referenced by: atncmp 39312 atnlt 39313 atnle 39317 cvlsupr2 39343 cvratlem 39422 2atjm 39446 atbtwn 39447 2atm 39528 2llnmeqat 39572 dalem25 39699 dalem55 39728 dalem57 39730 snatpsubN 39751 pmapat 39764 2llnma1b 39787 cdlemblem 39794 lhp2at0nle 40036 lhpat3 40047 4atexlemcnd 40073 trlval3 40188 cdlemc5 40196 cdleme3 40238 cdleme7 40250 cdleme11k 40269 cdleme16b 40280 cdleme16e 40283 cdleme16f 40284 cdlemednpq 40300 cdleme20j 40319 cdleme22aa 40340 cdleme22cN 40343 cdleme22d 40344 cdlemf2 40563 cdlemb3 40607 cdlemg12e 40648 cdlemg17dALTN 40665 cdlemg19a 40684 cdlemg27b 40697 cdlemg31d 40701 trlcone 40729 cdlemi 40821 tendotr 40831 cdlemk17 40859 cdlemk52 40955 cdleml1N 40977 dia2dimlem1 41065 dia2dimlem2 41066 dia2dimlem3 41067 |
| Copyright terms: Public domain | W3C validator |