Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version |
Description: If two atoms are comparable, they are equal. (atsseq 30997 analog.) (Contributed by NM, 13-Oct-2011.) |
Ref | Expression |
---|---|
atcmp.l | ⊢ ≤ = (le‘𝐾) |
atcmp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcmp | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlpos 37617 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Poset) |
3 | eqid 2737 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | atcmp.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atbase 37605 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
7 | 3, 4 | atbase 37605 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
8 | 7 | 3ad2ant3 1135 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ (Base‘𝐾)) |
9 | eqid 2737 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
10 | 3, 9 | atl0cl 37619 | . . 3 ⊢ (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾)) |
11 | 10 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾) ∈ (Base‘𝐾)) |
12 | eqid 2737 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
13 | 9, 12, 4 | atcvr0 37604 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
14 | 13 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
15 | 9, 12, 4 | atcvr0 37604 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
17 | atcmp.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
18 | 3, 17, 12 | cvrcmp 37599 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1388 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5097 ‘cfv 6484 Basecbs 17010 lecple 17067 Posetcpo 18123 0.cp0 18239 ⋖ ccvr 37578 Atomscatm 37579 AtLatcal 37580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-proset 18111 df-poset 18129 df-plt 18146 df-glb 18163 df-p0 18241 df-lat 18248 df-covers 37582 df-ats 37583 df-atl 37614 |
This theorem is referenced by: atncmp 37628 atnlt 37629 atnle 37633 cvlsupr2 37659 cvratlem 37738 2atjm 37762 atbtwn 37763 2atm 37844 2llnmeqat 37888 dalem25 38015 dalem55 38044 dalem57 38046 snatpsubN 38067 pmapat 38080 2llnma1b 38103 cdlemblem 38110 lhp2at0nle 38352 lhpat3 38363 4atexlemcnd 38389 trlval3 38504 cdlemc5 38512 cdleme3 38554 cdleme7 38566 cdleme11k 38585 cdleme16b 38596 cdleme16e 38599 cdleme16f 38600 cdlemednpq 38616 cdleme20j 38635 cdleme22aa 38656 cdleme22cN 38659 cdleme22d 38660 cdlemf2 38879 cdlemb3 38923 cdlemg12e 38964 cdlemg17dALTN 38981 cdlemg19a 39000 cdlemg27b 39013 cdlemg31d 39017 trlcone 39045 cdlemi 39137 tendotr 39147 cdlemk17 39175 cdlemk52 39271 cdleml1N 39293 dia2dimlem1 39381 dia2dimlem2 39382 dia2dimlem3 39383 |
Copyright terms: Public domain | W3C validator |