![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version |
Description: If two atoms are comparable, they are equal. (atsseq 31595 analog.) (Contributed by NM, 13-Oct-2011.) |
Ref | Expression |
---|---|
atcmp.l | β’ β€ = (leβπΎ) |
atcmp.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
atcmp | β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β€ π β π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlpos 38166 | . . 3 β’ (πΎ β AtLat β πΎ β Poset) | |
2 | 1 | 3ad2ant1 1133 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β πΎ β Poset) |
3 | eqid 2732 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
4 | atcmp.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
5 | 3, 4 | atbase 38154 | . . 3 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | 5 | 3ad2ant2 1134 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β π β (BaseβπΎ)) |
7 | 3, 4 | atbase 38154 | . . 3 β’ (π β π΄ β π β (BaseβπΎ)) |
8 | 7 | 3ad2ant3 1135 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β π β (BaseβπΎ)) |
9 | eqid 2732 | . . . 4 β’ (0.βπΎ) = (0.βπΎ) | |
10 | 3, 9 | atl0cl 38168 | . . 3 β’ (πΎ β AtLat β (0.βπΎ) β (BaseβπΎ)) |
11 | 10 | 3ad2ant1 1133 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (0.βπΎ) β (BaseβπΎ)) |
12 | eqid 2732 | . . . 4 β’ ( β βπΎ) = ( β βπΎ) | |
13 | 9, 12, 4 | atcvr0 38153 | . . 3 β’ ((πΎ β AtLat β§ π β π΄) β (0.βπΎ)( β βπΎ)π) |
14 | 13 | 3adant3 1132 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (0.βπΎ)( β βπΎ)π) |
15 | 9, 12, 4 | atcvr0 38153 | . . 3 β’ ((πΎ β AtLat β§ π β π΄) β (0.βπΎ)( β βπΎ)π) |
16 | 15 | 3adant2 1131 | . 2 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (0.βπΎ)( β βπΎ)π) |
17 | atcmp.l | . . 3 β’ β€ = (leβπΎ) | |
18 | 3, 17, 12 | cvrcmp 38148 | . 2 β’ ((πΎ β Poset β§ (π β (BaseβπΎ) β§ π β (BaseβπΎ) β§ (0.βπΎ) β (BaseβπΎ)) β§ ((0.βπΎ)( β βπΎ)π β§ (0.βπΎ)( β βπΎ)π)) β (π β€ π β π = π)) |
19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1388 | 1 β’ ((πΎ β AtLat β§ π β π΄ β§ π β π΄) β (π β€ π β π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 βcfv 6543 Basecbs 17143 lecple 17203 Posetcpo 18259 0.cp0 18375 β ccvr 38127 Atomscatm 38128 AtLatcal 38129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-proset 18247 df-poset 18265 df-plt 18282 df-glb 18299 df-p0 18377 df-lat 18384 df-covers 38131 df-ats 38132 df-atl 38163 |
This theorem is referenced by: atncmp 38177 atnlt 38178 atnle 38182 cvlsupr2 38208 cvratlem 38287 2atjm 38311 atbtwn 38312 2atm 38393 2llnmeqat 38437 dalem25 38564 dalem55 38593 dalem57 38595 snatpsubN 38616 pmapat 38629 2llnma1b 38652 cdlemblem 38659 lhp2at0nle 38901 lhpat3 38912 4atexlemcnd 38938 trlval3 39053 cdlemc5 39061 cdleme3 39103 cdleme7 39115 cdleme11k 39134 cdleme16b 39145 cdleme16e 39148 cdleme16f 39149 cdlemednpq 39165 cdleme20j 39184 cdleme22aa 39205 cdleme22cN 39208 cdleme22d 39209 cdlemf2 39428 cdlemb3 39472 cdlemg12e 39513 cdlemg17dALTN 39530 cdlemg19a 39549 cdlemg27b 39562 cdlemg31d 39566 trlcone 39594 cdlemi 39686 tendotr 39696 cdlemk17 39724 cdlemk52 39820 cdleml1N 39842 dia2dimlem1 39930 dia2dimlem2 39931 dia2dimlem3 39932 |
Copyright terms: Public domain | W3C validator |