Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcmp Structured version   Visualization version   GIF version

Theorem atcmp 37627
Description: If two atoms are comparable, they are equal. (atsseq 30997 analog.) (Contributed by NM, 13-Oct-2011.)
Hypotheses
Ref Expression
atcmp.l = (le‘𝐾)
atcmp.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcmp ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))

Proof of Theorem atcmp
StepHypRef Expression
1 atlpos 37617 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
213ad2ant1 1133 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ Poset)
3 eqid 2737 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 atcmp.a . . . 4 𝐴 = (Atoms‘𝐾)
53, 4atbase 37605 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
653ad2ant2 1134 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝑃 ∈ (Base‘𝐾))
73, 4atbase 37605 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
873ad2ant3 1135 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
9 eqid 2737 . . . 4 (0.‘𝐾) = (0.‘𝐾)
103, 9atl0cl 37619 . . 3 (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾))
11103ad2ant1 1133 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾) ∈ (Base‘𝐾))
12 eqid 2737 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
139, 12, 4atcvr0 37604 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
14133adant3 1132 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
159, 12, 4atcvr0 37604 . . 3 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄)
16153adant2 1131 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄)
17 atcmp.l . . 3 = (le‘𝐾)
183, 17, 12cvrcmp 37599 . 2 ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 𝑄𝑃 = 𝑄))
192, 6, 8, 11, 14, 16, 18syl132anc 1388 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5097  cfv 6484  Basecbs 17010  lecple 17067  Posetcpo 18123  0.cp0 18239  ccvr 37578  Atomscatm 37579  AtLatcal 37580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-proset 18111  df-poset 18129  df-plt 18146  df-glb 18163  df-p0 18241  df-lat 18248  df-covers 37582  df-ats 37583  df-atl 37614
This theorem is referenced by:  atncmp  37628  atnlt  37629  atnle  37633  cvlsupr2  37659  cvratlem  37738  2atjm  37762  atbtwn  37763  2atm  37844  2llnmeqat  37888  dalem25  38015  dalem55  38044  dalem57  38046  snatpsubN  38067  pmapat  38080  2llnma1b  38103  cdlemblem  38110  lhp2at0nle  38352  lhpat3  38363  4atexlemcnd  38389  trlval3  38504  cdlemc5  38512  cdleme3  38554  cdleme7  38566  cdleme11k  38585  cdleme16b  38596  cdleme16e  38599  cdleme16f  38600  cdlemednpq  38616  cdleme20j  38635  cdleme22aa  38656  cdleme22cN  38659  cdleme22d  38660  cdlemf2  38879  cdlemb3  38923  cdlemg12e  38964  cdlemg17dALTN  38981  cdlemg19a  39000  cdlemg27b  39013  cdlemg31d  39017  trlcone  39045  cdlemi  39137  tendotr  39147  cdlemk17  39175  cdlemk52  39271  cdleml1N  39293  dia2dimlem1  39381  dia2dimlem2  39382  dia2dimlem3  39383
  Copyright terms: Public domain W3C validator