Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version |
Description: If two atoms are comparable, they are equal. (atsseq 30709 analog.) (Contributed by NM, 13-Oct-2011.) |
Ref | Expression |
---|---|
atcmp.l | ⊢ ≤ = (le‘𝐾) |
atcmp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atcmp | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atlpos 37315 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Poset) |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | atcmp.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | atbase 37303 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
6 | 5 | 3ad2ant2 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
7 | 3, 4 | atbase 37303 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
8 | 7 | 3ad2ant3 1134 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ (Base‘𝐾)) |
9 | eqid 2738 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
10 | 3, 9 | atl0cl 37317 | . . 3 ⊢ (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾)) |
11 | 10 | 3ad2ant1 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾) ∈ (Base‘𝐾)) |
12 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
13 | 9, 12, 4 | atcvr0 37302 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
14 | 13 | 3adant3 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
15 | 9, 12, 4 | atcvr0 37302 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
16 | 15 | 3adant2 1130 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
17 | atcmp.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
18 | 3, 17, 12 | cvrcmp 37297 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1387 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 Posetcpo 18025 0.cp0 18141 ⋖ ccvr 37276 Atomscatm 37277 AtLatcal 37278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-proset 18013 df-poset 18031 df-plt 18048 df-glb 18065 df-p0 18143 df-lat 18150 df-covers 37280 df-ats 37281 df-atl 37312 |
This theorem is referenced by: atncmp 37326 atnlt 37327 atnle 37331 cvlsupr2 37357 cvratlem 37435 2atjm 37459 atbtwn 37460 2atm 37541 2llnmeqat 37585 dalem25 37712 dalem55 37741 dalem57 37743 snatpsubN 37764 pmapat 37777 2llnma1b 37800 cdlemblem 37807 lhp2at0nle 38049 lhpat3 38060 4atexlemcnd 38086 trlval3 38201 cdlemc5 38209 cdleme3 38251 cdleme7 38263 cdleme11k 38282 cdleme16b 38293 cdleme16e 38296 cdleme16f 38297 cdlemednpq 38313 cdleme20j 38332 cdleme22aa 38353 cdleme22cN 38356 cdleme22d 38357 cdlemf2 38576 cdlemb3 38620 cdlemg12e 38661 cdlemg17dALTN 38678 cdlemg19a 38697 cdlemg27b 38710 cdlemg31d 38714 trlcone 38742 cdlemi 38834 tendotr 38844 cdlemk17 38872 cdlemk52 38968 cdleml1N 38990 dia2dimlem1 39078 dia2dimlem2 39079 dia2dimlem3 39080 |
Copyright terms: Public domain | W3C validator |