Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atcmp Structured version   Visualization version   GIF version

Theorem atcmp 39304
Description: If two atoms are comparable, they are equal. (atsseq 32276 analog.) (Contributed by NM, 13-Oct-2011.)
Hypotheses
Ref Expression
atcmp.l = (le‘𝐾)
atcmp.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atcmp ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))

Proof of Theorem atcmp
StepHypRef Expression
1 atlpos 39294 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
213ad2ant1 1133 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ Poset)
3 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
4 atcmp.a . . . 4 𝐴 = (Atoms‘𝐾)
53, 4atbase 39282 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
653ad2ant2 1134 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝑃 ∈ (Base‘𝐾))
73, 4atbase 39282 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
873ad2ant3 1135 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → 𝑄 ∈ (Base‘𝐾))
9 eqid 2729 . . . 4 (0.‘𝐾) = (0.‘𝐾)
103, 9atl0cl 39296 . . 3 (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾))
11103ad2ant1 1133 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾) ∈ (Base‘𝐾))
12 eqid 2729 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
139, 12, 4atcvr0 39281 . . 3 ((𝐾 ∈ AtLat ∧ 𝑃𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
14133adant3 1132 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃)
159, 12, 4atcvr0 39281 . . 3 ((𝐾 ∈ AtLat ∧ 𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄)
16153adant2 1131 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄)
17 atcmp.l . . 3 = (le‘𝐾)
183, 17, 12cvrcmp 39276 . 2 ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 𝑄𝑃 = 𝑄))
192, 6, 8, 11, 14, 16, 18syl132anc 1390 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  Posetcpo 18268  0.cp0 18382  ccvr 39255  Atomscatm 39256  AtLatcal 39257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-proset 18255  df-poset 18274  df-plt 18289  df-glb 18306  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291
This theorem is referenced by:  atncmp  39305  atnlt  39306  atnle  39310  cvlsupr2  39336  cvratlem  39415  2atjm  39439  atbtwn  39440  2atm  39521  2llnmeqat  39565  dalem25  39692  dalem55  39721  dalem57  39723  snatpsubN  39744  pmapat  39757  2llnma1b  39780  cdlemblem  39787  lhp2at0nle  40029  lhpat3  40040  4atexlemcnd  40066  trlval3  40181  cdlemc5  40189  cdleme3  40231  cdleme7  40243  cdleme11k  40262  cdleme16b  40273  cdleme16e  40276  cdleme16f  40277  cdlemednpq  40293  cdleme20j  40312  cdleme22aa  40333  cdleme22cN  40336  cdleme22d  40337  cdlemf2  40556  cdlemb3  40600  cdlemg12e  40641  cdlemg17dALTN  40658  cdlemg19a  40677  cdlemg27b  40690  cdlemg31d  40694  trlcone  40722  cdlemi  40814  tendotr  40824  cdlemk17  40852  cdlemk52  40948  cdleml1N  40970  dia2dimlem1  41058  dia2dimlem2  41059  dia2dimlem3  41060
  Copyright terms: Public domain W3C validator