| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atcmp | Structured version Visualization version GIF version | ||
| Description: If two atoms are comparable, they are equal. (atsseq 32329 analog.) (Contributed by NM, 13-Oct-2011.) |
| Ref | Expression |
|---|---|
| atcmp.l | ⊢ ≤ = (le‘𝐾) |
| atcmp.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atcmp | ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlpos 39420 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 3 | eqid 2733 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | atcmp.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 3, 4 | atbase 39408 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 6 | 5 | 3ad2ant2 1134 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 7 | 3, 4 | atbase 39408 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 8 | 7 | 3ad2ant3 1135 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ (Base‘𝐾)) |
| 9 | eqid 2733 | . . . 4 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 10 | 3, 9 | atl0cl 39422 | . . 3 ⊢ (𝐾 ∈ AtLat → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 11 | 10 | 3ad2ant1 1133 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾) ∈ (Base‘𝐾)) |
| 12 | eqid 2733 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 13 | 9, 12, 4 | atcvr0 39407 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 14 | 13 | 3adant3 1132 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑃) |
| 15 | 9, 12, 4 | atcvr0 39407 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (0.‘𝐾)( ⋖ ‘𝐾)𝑄) |
| 17 | atcmp.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 18 | 3, 17, 12 | cvrcmp 39402 | . 2 ⊢ ((𝐾 ∈ Poset ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (0.‘𝐾) ∈ (Base‘𝐾)) ∧ ((0.‘𝐾)( ⋖ ‘𝐾)𝑃 ∧ (0.‘𝐾)( ⋖ ‘𝐾)𝑄)) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| 19 | 2, 6, 8, 11, 14, 16, 18 | syl132anc 1390 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 Posetcpo 18215 0.cp0 18329 ⋖ ccvr 39381 Atomscatm 39382 AtLatcal 39383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-proset 18202 df-poset 18221 df-plt 18236 df-glb 18253 df-p0 18331 df-lat 18340 df-covers 39385 df-ats 39386 df-atl 39417 |
| This theorem is referenced by: atncmp 39431 atnlt 39432 atnle 39436 cvlsupr2 39462 cvratlem 39540 2atjm 39564 atbtwn 39565 2atm 39646 2llnmeqat 39690 dalem25 39817 dalem55 39846 dalem57 39848 snatpsubN 39869 pmapat 39882 2llnma1b 39905 cdlemblem 39912 lhp2at0nle 40154 lhpat3 40165 4atexlemcnd 40191 trlval3 40306 cdlemc5 40314 cdleme3 40356 cdleme7 40368 cdleme11k 40387 cdleme16b 40398 cdleme16e 40401 cdleme16f 40402 cdlemednpq 40418 cdleme20j 40437 cdleme22aa 40458 cdleme22cN 40461 cdleme22d 40462 cdlemf2 40681 cdlemb3 40725 cdlemg12e 40766 cdlemg17dALTN 40783 cdlemg19a 40802 cdlemg27b 40815 cdlemg31d 40819 trlcone 40847 cdlemi 40939 tendotr 40949 cdlemk17 40977 cdlemk52 41073 cdleml1N 41095 dia2dimlem1 41183 dia2dimlem2 41184 dia2dimlem3 41185 |
| Copyright terms: Public domain | W3C validator |