Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatle Structured version   Visualization version   GIF version

Theorem atlatle 36616
Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 30154 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatle.b 𝐵 = (Base‘𝐾)
atlatle.l = (le‘𝐾)
atlatle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlatle (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem atlatle
StepHypRef Expression
1 simpl13 1247 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ AtLat)
2 atlpos 36597 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
31, 2syl 17 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
4 atlatle.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 atlatle.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 36585 . . . . . 6 (𝑝𝐴𝑝𝐵)
76adantl 485 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
8 simpl2 1189 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
9 simpl3 1190 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑌𝐵)
10 atlatle.l . . . . . 6 = (le‘𝐾)
114, 10postr 17555 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
123, 7, 8, 9, 11syl13anc 1369 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
1312expcomd 420 . . 3 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌)))
1413ralrimdva 3154 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
15 ss2rab 3998 . . 3 ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌))
16 simpl12 1246 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → 𝐾 ∈ CLat)
17 ssrab2 4007 . . . . . . . 8 {𝑝𝐴𝑝 𝑌} ⊆ 𝐴
184, 5atssbase 36586 . . . . . . . 8 𝐴𝐵
1917, 18sstri 3924 . . . . . . 7 {𝑝𝐴𝑝 𝑌} ⊆ 𝐵
20 eqid 2798 . . . . . . . 8 (lub‘𝐾) = (lub‘𝐾)
214, 10, 20lubss 17723 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑌} ⊆ 𝐵 ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2219, 21mp3an2 1446 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2316, 22sylancom 591 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2423ex 416 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌})))
254, 10, 20, 5atlatmstc 36615 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
26253adant3 1129 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
274, 10, 20, 5atlatmstc 36615 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
28273adant2 1128 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
2926, 28breq12d 5043 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) ↔ 𝑋 𝑌))
3024, 29sylibd 242 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → 𝑋 𝑌))
3115, 30syl5bir 246 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) → 𝑋 𝑌))
3214, 31impbid 215 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  {crab 3110  wss 3881   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564  Posetcpo 17542  lubclub 17544  CLatccla 17709  OMLcoml 36471  Atomscatm 36559  AtLatcal 36560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594
This theorem is referenced by:  atlrelat1  36617  hlatle  36694
  Copyright terms: Public domain W3C validator