Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatle Structured version   Visualization version   GIF version

Theorem atlatle 39359
Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 32343 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatle.b 𝐵 = (Base‘𝐾)
atlatle.l = (le‘𝐾)
atlatle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlatle (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem atlatle
StepHypRef Expression
1 simpl13 1251 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ AtLat)
2 atlpos 39340 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
31, 2syl 17 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
4 atlatle.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 atlatle.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39328 . . . . . 6 (𝑝𝐴𝑝𝐵)
76adantl 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
8 simpl2 1193 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
9 simpl3 1194 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑌𝐵)
10 atlatle.l . . . . . 6 = (le‘𝐾)
114, 10postr 18221 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
123, 7, 8, 9, 11syl13anc 1374 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
1312expcomd 416 . . 3 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌)))
1413ralrimdva 3132 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
15 ss2rab 4016 . . 3 ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌))
16 simpl12 1250 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → 𝐾 ∈ CLat)
17 ssrab2 4025 . . . . . . . 8 {𝑝𝐴𝑝 𝑌} ⊆ 𝐴
184, 5atssbase 39329 . . . . . . . 8 𝐴𝐵
1917, 18sstri 3939 . . . . . . 7 {𝑝𝐴𝑝 𝑌} ⊆ 𝐵
20 eqid 2731 . . . . . . . 8 (lub‘𝐾) = (lub‘𝐾)
214, 10, 20lubss 18414 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑌} ⊆ 𝐵 ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2219, 21mp3an2 1451 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2316, 22sylancom 588 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2423ex 412 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌})))
254, 10, 20, 5atlatmstc 39358 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
26253adant3 1132 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
274, 10, 20, 5atlatmstc 39358 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
28273adant2 1131 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
2926, 28breq12d 5099 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) ↔ 𝑋 𝑌))
3024, 29sylibd 239 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → 𝑋 𝑌))
3115, 30biimtrrid 243 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) → 𝑋 𝑌))
3214, 31impbid 212 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3897   class class class wbr 5086  cfv 6476  Basecbs 17115  lecple 17163  Posetcpo 18208  lubclub 18210  CLatccla 18399  OMLcoml 39214  Atomscatm 39302  AtLatcal 39303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-clat 18400  df-oposet 39215  df-ol 39217  df-oml 39218  df-covers 39305  df-ats 39306  df-atl 39337
This theorem is referenced by:  atlrelat1  39360  hlatle  39437
  Copyright terms: Public domain W3C validator