Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatle Structured version   Visualization version   GIF version

Theorem atlatle 39318
Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 32334 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatle.b 𝐵 = (Base‘𝐾)
atlatle.l = (le‘𝐾)
atlatle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlatle (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem atlatle
StepHypRef Expression
1 simpl13 1251 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ AtLat)
2 atlpos 39299 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
31, 2syl 17 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
4 atlatle.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 atlatle.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39287 . . . . . 6 (𝑝𝐴𝑝𝐵)
76adantl 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
8 simpl2 1193 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
9 simpl3 1194 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑌𝐵)
10 atlatle.l . . . . . 6 = (le‘𝐾)
114, 10postr 18245 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
123, 7, 8, 9, 11syl13anc 1374 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
1312expcomd 416 . . 3 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌)))
1413ralrimdva 3129 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
15 ss2rab 4024 . . 3 ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌))
16 simpl12 1250 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → 𝐾 ∈ CLat)
17 ssrab2 4033 . . . . . . . 8 {𝑝𝐴𝑝 𝑌} ⊆ 𝐴
184, 5atssbase 39288 . . . . . . . 8 𝐴𝐵
1917, 18sstri 3947 . . . . . . 7 {𝑝𝐴𝑝 𝑌} ⊆ 𝐵
20 eqid 2729 . . . . . . . 8 (lub‘𝐾) = (lub‘𝐾)
214, 10, 20lubss 18438 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑌} ⊆ 𝐵 ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2219, 21mp3an2 1451 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2316, 22sylancom 588 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2423ex 412 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌})))
254, 10, 20, 5atlatmstc 39317 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
26253adant3 1132 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
274, 10, 20, 5atlatmstc 39317 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
28273adant2 1131 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
2926, 28breq12d 5108 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) ↔ 𝑋 𝑌))
3024, 29sylibd 239 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → 𝑋 𝑌))
3115, 30biimtrrid 243 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) → 𝑋 𝑌))
3214, 31impbid 212 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396  wss 3905   class class class wbr 5095  cfv 6486  Basecbs 17139  lecple 17187  Posetcpo 18232  lubclub 18234  CLatccla 18423  OMLcoml 39173  Atomscatm 39261  AtLatcal 39262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18219  df-poset 18238  df-plt 18253  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-p0 18348  df-lat 18357  df-clat 18424  df-oposet 39174  df-ol 39176  df-oml 39177  df-covers 39264  df-ats 39265  df-atl 39296
This theorem is referenced by:  atlrelat1  39319  hlatle  39397
  Copyright terms: Public domain W3C validator