Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmpoid Structured version   Visualization version   GIF version

Theorem elrnmpoid 45222
Description: Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
elrnmpoid.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elrnmpoid ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elrnmpoid
StepHypRef Expression
1 elrnmpoid.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21fnmpo 8048 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
323ad2ant3 1135 . 2 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → 𝐹 Fn (𝐴 × 𝐵))
4 simp1 1136 . 2 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → 𝑥𝐴)
5 simp2 1137 . 2 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → 𝑦𝐵)
6 fnovrn 7564 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝑥𝐴𝑦𝐵) → (𝑥𝐹𝑦) ∈ ran 𝐹)
73, 4, 5, 6syl3anc 1373 1 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044   × cxp 5636  ran crn 5639   Fn wfn 6506  (class class class)co 7387  cmpo 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969
This theorem is referenced by:  smflimlem1  46769  smflimlem2  46770
  Copyright terms: Public domain W3C validator