Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnmpoid Structured version   Visualization version   GIF version

Theorem elrnmpoid 42767
Description: Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
elrnmpoid.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elrnmpoid ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem elrnmpoid
StepHypRef Expression
1 elrnmpoid.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21fnmpo 7909 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑉𝐹 Fn (𝐴 × 𝐵))
323ad2ant3 1134 . 2 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → 𝐹 Fn (𝐴 × 𝐵))
4 simp1 1135 . 2 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → 𝑥𝐴)
5 simp2 1136 . 2 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → 𝑦𝐵)
6 fnovrn 7447 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝑥𝐴𝑦𝐵) → (𝑥𝐹𝑦) ∈ ran 𝐹)
73, 4, 5, 6syl3anc 1370 1 ((𝑥𝐴𝑦𝐵 ∧ ∀𝑥𝐴𝑦𝐵 𝐶𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064   × cxp 5587  ran crn 5590   Fn wfn 6428  (class class class)co 7275  cmpo 7277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832
This theorem is referenced by:  smflimlem1  44306  smflimlem2  44307
  Copyright terms: Public domain W3C validator