MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  encv Structured version   Visualization version   GIF version

Theorem encv 8926
Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.)
Assertion
Ref Expression
encv (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem encv
StepHypRef Expression
1 relen 8923 . 2 Rel ≈
21brrelex12i 5693 1 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3447   class class class wbr 5107  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-en 8919
This theorem is referenced by:  bren  8928  en0  8989  en0r  8991  en1  8995  rexdif1en  9122  dif1en  9124  enp1i  9224  ensucne0OLD  43519  axccd  45223
  Copyright terms: Public domain W3C validator