| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > encv | Structured version Visualization version GIF version | ||
| Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.) |
| Ref | Expression |
|---|---|
| encv | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8969 | . 2 ⊢ Rel ≈ | |
| 2 | 1 | brrelex12i 5714 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3464 class class class wbr 5124 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-en 8965 |
| This theorem is referenced by: bren 8974 en0 9037 en0r 9039 en1 9043 rexdif1en 9177 dif1en 9179 enp1i 9290 ensucne0OLD 43521 axccd 45220 |
| Copyright terms: Public domain | W3C validator |