| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > encv | Structured version Visualization version GIF version | ||
| Description: If two classes are equinumerous, both classes are sets. (Contributed by AV, 21-Mar-2019.) |
| Ref | Expression |
|---|---|
| encv | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relen 8991 | . 2 ⊢ Rel ≈ | |
| 2 | 1 | brrelex12i 5739 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3479 class class class wbr 5142 ≈ cen 8983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-en 8987 |
| This theorem is referenced by: bren 8996 en0 9059 en0r 9061 en1 9065 rexdif1en 9199 dif1en 9201 enp1i 9314 ensucne0OLD 43548 axccd 45239 |
| Copyright terms: Public domain | W3C validator |