Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-funun Structured version   Visualization version   GIF version

Theorem bj-funun 37240
Description: Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.)
Hypotheses
Ref Expression
bj-funun.un (𝜑𝐹 = (𝐺𝐻))
bj-funun.neldm (𝜑 → ¬ 𝐴 ∈ dom 𝐻)
Assertion
Ref Expression
bj-funun (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-funun
StepHypRef Expression
1 bj-funun.un . . . 4 (𝜑𝐹 = (𝐺𝐻))
2 imaeq1 6026 . . . . 5 (𝐹 = (𝐺𝐻) → (𝐹 “ {𝐴}) = ((𝐺𝐻) “ {𝐴}))
3 imaundir 6123 . . . . 5 ((𝐺𝐻) “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴}))
42, 3eqtrdi 2780 . . . 4 (𝐹 = (𝐺𝐻) → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})))
51, 4syl 17 . . 3 (𝜑 → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})))
6 bj-funun.neldm . . . . 5 (𝜑 → ¬ 𝐴 ∈ dom 𝐻)
7 ndmima 6074 . . . . 5 𝐴 ∈ dom 𝐻 → (𝐻 “ {𝐴}) = ∅)
86, 7syl 17 . . . 4 (𝜑 → (𝐻 “ {𝐴}) = ∅)
9 uneq2 4125 . . . . 5 ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = ((𝐺 “ {𝐴}) ∪ ∅))
10 un0 4357 . . . . 5 ((𝐺 “ {𝐴}) ∪ ∅) = (𝐺 “ {𝐴})
119, 10eqtrdi 2780 . . . 4 ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴}))
128, 11syl 17 . . 3 (𝜑 → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴}))
135, 12eqtrd 2764 . 2 (𝜑 → (𝐹 “ {𝐴}) = (𝐺 “ {𝐴}))
14 bj-imafv 37239 . 2 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹𝐴) = (𝐺𝐴))
1513, 14syl 17 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3912  c0 4296  {csn 4589  dom cdm 5638  cima 5641  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519
This theorem is referenced by:  bj-fununsn1  37241  bj-fununsn2  37242
  Copyright terms: Public domain W3C validator