Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-funun Structured version   Visualization version   GIF version

Theorem bj-funun 37247
Description: Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.)
Hypotheses
Ref Expression
bj-funun.un (𝜑𝐹 = (𝐺𝐻))
bj-funun.neldm (𝜑 → ¬ 𝐴 ∈ dom 𝐻)
Assertion
Ref Expression
bj-funun (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-funun
StepHypRef Expression
1 bj-funun.un . . . 4 (𝜑𝐹 = (𝐺𝐻))
2 imaeq1 6029 . . . . 5 (𝐹 = (𝐺𝐻) → (𝐹 “ {𝐴}) = ((𝐺𝐻) “ {𝐴}))
3 imaundir 6126 . . . . 5 ((𝐺𝐻) “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴}))
42, 3eqtrdi 2781 . . . 4 (𝐹 = (𝐺𝐻) → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})))
51, 4syl 17 . . 3 (𝜑 → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})))
6 bj-funun.neldm . . . . 5 (𝜑 → ¬ 𝐴 ∈ dom 𝐻)
7 ndmima 6077 . . . . 5 𝐴 ∈ dom 𝐻 → (𝐻 “ {𝐴}) = ∅)
86, 7syl 17 . . . 4 (𝜑 → (𝐻 “ {𝐴}) = ∅)
9 uneq2 4128 . . . . 5 ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = ((𝐺 “ {𝐴}) ∪ ∅))
10 un0 4360 . . . . 5 ((𝐺 “ {𝐴}) ∪ ∅) = (𝐺 “ {𝐴})
119, 10eqtrdi 2781 . . . 4 ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴}))
128, 11syl 17 . . 3 (𝜑 → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴}))
135, 12eqtrd 2765 . 2 (𝜑 → (𝐹 “ {𝐴}) = (𝐺 “ {𝐴}))
14 bj-imafv 37246 . 2 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹𝐴) = (𝐺𝐴))
1513, 14syl 17 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cun 3915  c0 4299  {csn 4592  dom cdm 5641  cima 5644  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fv 6522
This theorem is referenced by:  bj-fununsn1  37248  bj-fununsn2  37249
  Copyright terms: Public domain W3C validator