Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-funun | Structured version Visualization version GIF version |
Description: Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.) |
Ref | Expression |
---|---|
bj-funun.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ 𝐻)) |
bj-funun.neldm | ⊢ (𝜑 → ¬ 𝐴 ∈ dom 𝐻) |
Ref | Expression |
---|---|
bj-funun | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-funun.un | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ 𝐻)) | |
2 | imaeq1 5953 | . . . . 5 ⊢ (𝐹 = (𝐺 ∪ 𝐻) → (𝐹 “ {𝐴}) = ((𝐺 ∪ 𝐻) “ {𝐴})) | |
3 | imaundir 6043 | . . . . 5 ⊢ ((𝐺 ∪ 𝐻) “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) | |
4 | 2, 3 | eqtrdi 2795 | . . . 4 ⊢ (𝐹 = (𝐺 ∪ 𝐻) → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴}))) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴}))) |
6 | bj-funun.neldm | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 ∈ dom 𝐻) | |
7 | ndmima 6000 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐻 → (𝐻 “ {𝐴}) = ∅) | |
8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐻 “ {𝐴}) = ∅) |
9 | uneq2 4087 | . . . . 5 ⊢ ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = ((𝐺 “ {𝐴}) ∪ ∅)) | |
10 | un0 4321 | . . . . 5 ⊢ ((𝐺 “ {𝐴}) ∪ ∅) = (𝐺 “ {𝐴}) | |
11 | 9, 10 | eqtrdi 2795 | . . . 4 ⊢ ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴})) |
12 | 8, 11 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴})) |
13 | 5, 12 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐹 “ {𝐴}) = (𝐺 “ {𝐴})) |
14 | bj-imafv 35349 | . 2 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
15 | 13, 14 | syl 17 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∅c0 4253 {csn 4558 dom cdm 5580 “ cima 5583 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fv 6426 |
This theorem is referenced by: bj-fununsn1 35351 bj-fununsn2 35352 |
Copyright terms: Public domain | W3C validator |