Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-funun Structured version   Visualization version   GIF version

Theorem bj-funun 35350
Description: Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.)
Hypotheses
Ref Expression
bj-funun.un (𝜑𝐹 = (𝐺𝐻))
bj-funun.neldm (𝜑 → ¬ 𝐴 ∈ dom 𝐻)
Assertion
Ref Expression
bj-funun (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bj-funun
StepHypRef Expression
1 bj-funun.un . . . 4 (𝜑𝐹 = (𝐺𝐻))
2 imaeq1 5953 . . . . 5 (𝐹 = (𝐺𝐻) → (𝐹 “ {𝐴}) = ((𝐺𝐻) “ {𝐴}))
3 imaundir 6043 . . . . 5 ((𝐺𝐻) “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴}))
42, 3eqtrdi 2795 . . . 4 (𝐹 = (𝐺𝐻) → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})))
51, 4syl 17 . . 3 (𝜑 → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})))
6 bj-funun.neldm . . . . 5 (𝜑 → ¬ 𝐴 ∈ dom 𝐻)
7 ndmima 6000 . . . . 5 𝐴 ∈ dom 𝐻 → (𝐻 “ {𝐴}) = ∅)
86, 7syl 17 . . . 4 (𝜑 → (𝐻 “ {𝐴}) = ∅)
9 uneq2 4087 . . . . 5 ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = ((𝐺 “ {𝐴}) ∪ ∅))
10 un0 4321 . . . . 5 ((𝐺 “ {𝐴}) ∪ ∅) = (𝐺 “ {𝐴})
119, 10eqtrdi 2795 . . . 4 ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴}))
128, 11syl 17 . . 3 (𝜑 → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴}))
135, 12eqtrd 2778 . 2 (𝜑 → (𝐹 “ {𝐴}) = (𝐺 “ {𝐴}))
14 bj-imafv 35349 . 2 ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹𝐴) = (𝐺𝐴))
1513, 14syl 17 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  cun 3881  c0 4253  {csn 4558  dom cdm 5580  cima 5583  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fv 6426
This theorem is referenced by:  bj-fununsn1  35351  bj-fununsn2  35352
  Copyright terms: Public domain W3C validator