| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-funun | Structured version Visualization version GIF version | ||
| Description: Value of a function expressed as a union of two functions at a point not in the domain of one of them. (Contributed by BJ, 18-Mar-2023.) |
| Ref | Expression |
|---|---|
| bj-funun.un | ⊢ (𝜑 → 𝐹 = (𝐺 ∪ 𝐻)) |
| bj-funun.neldm | ⊢ (𝜑 → ¬ 𝐴 ∈ dom 𝐻) |
| Ref | Expression |
|---|---|
| bj-funun | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-funun.un | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐺 ∪ 𝐻)) | |
| 2 | imaeq1 6029 | . . . . 5 ⊢ (𝐹 = (𝐺 ∪ 𝐻) → (𝐹 “ {𝐴}) = ((𝐺 ∪ 𝐻) “ {𝐴})) | |
| 3 | imaundir 6126 | . . . . 5 ⊢ ((𝐺 ∪ 𝐻) “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) | |
| 4 | 2, 3 | eqtrdi 2781 | . . . 4 ⊢ (𝐹 = (𝐺 ∪ 𝐻) → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴}))) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹 “ {𝐴}) = ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴}))) |
| 6 | bj-funun.neldm | . . . . 5 ⊢ (𝜑 → ¬ 𝐴 ∈ dom 𝐻) | |
| 7 | ndmima 6077 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom 𝐻 → (𝐻 “ {𝐴}) = ∅) | |
| 8 | 6, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐻 “ {𝐴}) = ∅) |
| 9 | uneq2 4128 | . . . . 5 ⊢ ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = ((𝐺 “ {𝐴}) ∪ ∅)) | |
| 10 | un0 4360 | . . . . 5 ⊢ ((𝐺 “ {𝐴}) ∪ ∅) = (𝐺 “ {𝐴}) | |
| 11 | 9, 10 | eqtrdi 2781 | . . . 4 ⊢ ((𝐻 “ {𝐴}) = ∅ → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴})) |
| 12 | 8, 11 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐺 “ {𝐴}) ∪ (𝐻 “ {𝐴})) = (𝐺 “ {𝐴})) |
| 13 | 5, 12 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐹 “ {𝐴}) = (𝐺 “ {𝐴})) |
| 14 | bj-imafv 37246 | . 2 ⊢ ((𝐹 “ {𝐴}) = (𝐺 “ {𝐴}) → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
| 15 | 13, 14 | syl 17 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ∅c0 4299 {csn 4592 dom cdm 5641 “ cima 5644 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: bj-fununsn1 37248 bj-fununsn2 37249 |
| Copyright terms: Public domain | W3C validator |