| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepresdmqss | Structured version Visualization version GIF version | ||
| Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
| Ref | Expression |
|---|---|
| cnvepresdmqss | ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvepresex 38374 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
| 2 | brdmqss 38749 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (◡ E ↾ 𝐴) ∈ V) → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | |
| 3 | 1, 2 | mpdan 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) |
| 4 | n0el3 38755 | . 2 ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | |
| 5 | 3, 4 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4282 class class class wbr 5093 E cep 5518 ◡ccnv 5618 dom cdm 5619 ↾ cres 5621 / cqs 8627 DomainQss cdmqss 38251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 df-dmqss 38740 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |