Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepresdmqss Structured version   Visualization version   GIF version

Theorem cnvepresdmqss 38675
Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
cnvepresdmqss (𝐴𝑉 → (( E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴))

Proof of Theorem cnvepresdmqss
StepHypRef Expression
1 cnvepresex 38357 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 brdmqss 38669 . . 3 ((𝐴𝑉 ∧ ( E ↾ 𝐴) ∈ V) → (( E ↾ 𝐴) DomainQss 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
31, 2mpdan 687 . 2 (𝐴𝑉 → (( E ↾ 𝐴) DomainQss 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
4 n0el3 38674 . 2 (¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
53, 4bitr4di 289 1 (𝐴𝑉 → (( E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313   class class class wbr 5124   E cep 5557  ccnv 5658  dom cdm 5659  cres 5661   / cqs 8723   DomainQss cdmqss 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730  df-dmqss 38661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator