![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepresdmqss | Structured version Visualization version GIF version |
Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.) |
Ref | Expression |
---|---|
cnvepresdmqss | ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex 36824 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | |
2 | brdmqss 37137 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (◡ E ↾ 𝐴) ∈ V) → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) | |
3 | 1, 2 | mpdan 686 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴)) |
4 | n0el3 37142 | . 2 ⊢ (¬ ∅ ∈ 𝐴 ↔ (dom (◡ E ↾ 𝐴) / (◡ E ↾ 𝐴)) = 𝐴) | |
5 | 3, 4 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → ((◡ E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ∅c0 4287 class class class wbr 5110 E cep 5541 ◡ccnv 5637 dom cdm 5638 ↾ cres 5640 / cqs 8654 DomainQss cdmqss 36686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-eprel 5542 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8657 df-qs 8661 df-dmqss 37129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |