Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepresdmqss Structured version   Visualization version   GIF version

Theorem cnvepresdmqss 38634
Description: The domain quotient binary relation of the restricted converse epsilon relation is equivalent to the negated elementhood of the empty set in the restriction. (Contributed by Peter Mazsa, 14-Aug-2021.)
Assertion
Ref Expression
cnvepresdmqss (𝐴𝑉 → (( E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴))

Proof of Theorem cnvepresdmqss
StepHypRef Expression
1 cnvepresex 38316 . . 3 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
2 brdmqss 38628 . . 3 ((𝐴𝑉 ∧ ( E ↾ 𝐴) ∈ V) → (( E ↾ 𝐴) DomainQss 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
31, 2mpdan 687 . 2 (𝐴𝑉 → (( E ↾ 𝐴) DomainQss 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴))
4 n0el3 38633 . 2 (¬ ∅ ∈ 𝐴 ↔ (dom ( E ↾ 𝐴) / ( E ↾ 𝐴)) = 𝐴)
53, 4bitr4di 289 1 (𝐴𝑉 → (( E ↾ 𝐴) DomainQss 𝐴 ↔ ¬ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339   class class class wbr 5148   E cep 5588  ccnv 5688  dom cdm 5689  cres 5691   / cqs 8743   DomainQss cdmqss 38185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ec 8746  df-qs 8750  df-dmqss 38620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator