Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldexttr Structured version   Visualization version   GIF version

Theorem fldexttr 33625
Description: Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldexttr ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)

Proof of Theorem fldexttr
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹/FldExt𝐾)
2 simpl 482 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
3 fldextfld2 33615 . . . . . . 7 (𝐸/FldExt𝐹𝐹 ∈ Field)
42, 3syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
5 fldextfld2 33615 . . . . . . 7 (𝐹/FldExt𝐾𝐾 ∈ Field)
61, 5syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
7 brfldext 33612 . . . . . 6 ((𝐹 ∈ Field ∧ 𝐾 ∈ Field) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
84, 6, 7syl2anc 584 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
91, 8mpbid 232 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹)))
109simpld 494 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐹s (Base‘𝐾)))
11 fldextfld1 33614 . . . . . . . . 9 (𝐸/FldExt𝐹𝐸 ∈ Field)
122, 11syl 17 . . . . . . . 8 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
13 brfldext 33612 . . . . . . . 8 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
1412, 4, 13syl2anc 584 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
152, 14mpbid 232 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1615simpld 494 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
1716oveq1d 7364 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)))
18 fvex 6835 . . . . 5 (Base‘𝐹) ∈ V
19 fvex 6835 . . . . 5 (Base‘𝐾) ∈ V
20 ressress 17158 . . . . 5 (((Base‘𝐹) ∈ V ∧ (Base‘𝐾) ∈ V) → ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
2118, 19, 20mp2an 692 . . . 4 ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾)))
2217, 21eqtrdi 2780 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
23 incom 4160 . . . . 5 ((Base‘𝐾) ∩ (Base‘𝐹)) = ((Base‘𝐹) ∩ (Base‘𝐾))
249simprd 495 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
25 eqid 2729 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
2625subrgss 20457 . . . . . . 7 ((Base‘𝐾) ∈ (SubRing‘𝐹) → (Base‘𝐾) ⊆ (Base‘𝐹))
2724, 26syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ⊆ (Base‘𝐹))
28 dfss2 3921 . . . . . 6 ((Base‘𝐾) ⊆ (Base‘𝐹) ↔ ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
2927, 28sylib 218 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
3023, 29eqtr3id 2778 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐹) ∩ (Base‘𝐾)) = (Base‘𝐾))
3130oveq2d 7365 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))) = (𝐸s (Base‘𝐾)))
3210, 22, 313eqtrd 2768 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
3315simprd 495 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
3416fveq2d 6826 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3524, 34eleqtrd 2830 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
36 eqid 2729 . . . . 5 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
3736subsubrg 20483 . . . 4 ((Base‘𝐹) ∈ (SubRing‘𝐸) → ((Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))) ↔ ((Base‘𝐾) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ⊆ (Base‘𝐹))))
3837simprbda 498 . . 3 (((Base‘𝐹) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹)))) → (Base‘𝐾) ∈ (SubRing‘𝐸))
3933, 35, 38syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐸))
40 brfldext 33612 . . 3 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4112, 6, 40syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4232, 39, 41mpbir2and 713 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  SubRingcsubrg 20454  Fieldcfield 20615  /FldExtcfldext 33605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-subg 19002  df-mgp 20026  df-ur 20067  df-ring 20120  df-subrg 20455  df-fldext 33608
This theorem is referenced by:  extdgmul  33630  finexttrb  33632  fldext2chn  33695
  Copyright terms: Public domain W3C validator