Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldexttr Structured version   Visualization version   GIF version

Theorem fldexttr 31733
Description: Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldexttr ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)

Proof of Theorem fldexttr
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹/FldExt𝐾)
2 simpl 483 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
3 fldextfld2 31725 . . . . . . 7 (𝐸/FldExt𝐹𝐹 ∈ Field)
42, 3syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
5 fldextfld2 31725 . . . . . . 7 (𝐹/FldExt𝐾𝐾 ∈ Field)
61, 5syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
7 brfldext 31722 . . . . . 6 ((𝐹 ∈ Field ∧ 𝐾 ∈ Field) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
84, 6, 7syl2anc 584 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
91, 8mpbid 231 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹)))
109simpld 495 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐹s (Base‘𝐾)))
11 fldextfld1 31724 . . . . . . . . 9 (𝐸/FldExt𝐹𝐸 ∈ Field)
122, 11syl 17 . . . . . . . 8 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
13 brfldext 31722 . . . . . . . 8 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
1412, 4, 13syl2anc 584 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
152, 14mpbid 231 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1615simpld 495 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
1716oveq1d 7290 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)))
18 fvex 6787 . . . . 5 (Base‘𝐹) ∈ V
19 fvex 6787 . . . . 5 (Base‘𝐾) ∈ V
20 ressress 16958 . . . . 5 (((Base‘𝐹) ∈ V ∧ (Base‘𝐾) ∈ V) → ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
2118, 19, 20mp2an 689 . . . 4 ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾)))
2217, 21eqtrdi 2794 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
23 incom 4135 . . . . 5 ((Base‘𝐾) ∩ (Base‘𝐹)) = ((Base‘𝐹) ∩ (Base‘𝐾))
249simprd 496 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
25 eqid 2738 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
2625subrgss 20025 . . . . . . 7 ((Base‘𝐾) ∈ (SubRing‘𝐹) → (Base‘𝐾) ⊆ (Base‘𝐹))
2724, 26syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ⊆ (Base‘𝐹))
28 df-ss 3904 . . . . . 6 ((Base‘𝐾) ⊆ (Base‘𝐹) ↔ ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
2927, 28sylib 217 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
3023, 29eqtr3id 2792 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐹) ∩ (Base‘𝐾)) = (Base‘𝐾))
3130oveq2d 7291 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))) = (𝐸s (Base‘𝐾)))
3210, 22, 313eqtrd 2782 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
3315simprd 496 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
3416fveq2d 6778 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3524, 34eleqtrd 2841 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
36 eqid 2738 . . . . 5 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
3736subsubrg 20050 . . . 4 ((Base‘𝐹) ∈ (SubRing‘𝐸) → ((Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))) ↔ ((Base‘𝐾) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ⊆ (Base‘𝐹))))
3837simprbda 499 . . 3 (((Base‘𝐹) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹)))) → (Base‘𝐾) ∈ (SubRing‘𝐸))
3933, 35, 38syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐸))
40 brfldext 31722 . . 3 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4112, 6, 40syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4232, 39, 41mpbir2and 710 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Fieldcfield 19992  SubRingcsubrg 20020  /FldExtcfldext 31713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-fldext 31717
This theorem is referenced by:  extdgmul  31736  finexttrb  31737
  Copyright terms: Public domain W3C validator