Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldexttr Structured version   Visualization version   GIF version

Theorem fldexttr 33686
Description: Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldexttr ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)

Proof of Theorem fldexttr
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹/FldExt𝐾)
2 simpl 482 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
3 fldextfld2 33678 . . . . . . 7 (𝐸/FldExt𝐹𝐹 ∈ Field)
42, 3syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
5 fldextfld2 33678 . . . . . . 7 (𝐹/FldExt𝐾𝐾 ∈ Field)
61, 5syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
7 brfldext 33675 . . . . . 6 ((𝐹 ∈ Field ∧ 𝐾 ∈ Field) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
84, 6, 7syl2anc 584 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
91, 8mpbid 232 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹)))
109simpld 494 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐹s (Base‘𝐾)))
11 fldextfld1 33677 . . . . . . . . 9 (𝐸/FldExt𝐹𝐸 ∈ Field)
122, 11syl 17 . . . . . . . 8 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
13 brfldext 33675 . . . . . . . 8 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
1412, 4, 13syl2anc 584 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
152, 14mpbid 232 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1615simpld 494 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
1716oveq1d 7446 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)))
18 fvex 6920 . . . . 5 (Base‘𝐹) ∈ V
19 fvex 6920 . . . . 5 (Base‘𝐾) ∈ V
20 ressress 17294 . . . . 5 (((Base‘𝐹) ∈ V ∧ (Base‘𝐾) ∈ V) → ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
2118, 19, 20mp2an 692 . . . 4 ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾)))
2217, 21eqtrdi 2791 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
23 incom 4217 . . . . 5 ((Base‘𝐾) ∩ (Base‘𝐹)) = ((Base‘𝐹) ∩ (Base‘𝐾))
249simprd 495 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
25 eqid 2735 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
2625subrgss 20589 . . . . . . 7 ((Base‘𝐾) ∈ (SubRing‘𝐹) → (Base‘𝐾) ⊆ (Base‘𝐹))
2724, 26syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ⊆ (Base‘𝐹))
28 dfss2 3981 . . . . . 6 ((Base‘𝐾) ⊆ (Base‘𝐹) ↔ ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
2927, 28sylib 218 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
3023, 29eqtr3id 2789 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐹) ∩ (Base‘𝐾)) = (Base‘𝐾))
3130oveq2d 7447 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))) = (𝐸s (Base‘𝐾)))
3210, 22, 313eqtrd 2779 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
3315simprd 495 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
3416fveq2d 6911 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3524, 34eleqtrd 2841 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
36 eqid 2735 . . . . 5 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
3736subsubrg 20615 . . . 4 ((Base‘𝐹) ∈ (SubRing‘𝐸) → ((Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))) ↔ ((Base‘𝐾) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ⊆ (Base‘𝐹))))
3837simprbda 498 . . 3 (((Base‘𝐹) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹)))) → (Base‘𝐾) ∈ (SubRing‘𝐸))
3933, 35, 38syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐸))
40 brfldext 33675 . . 3 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4112, 6, 40syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4232, 39, 41mpbir2and 713 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  SubRingcsubrg 20586  Fieldcfield 20747  /FldExtcfldext 33666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-subg 19154  df-mgp 20153  df-ur 20200  df-ring 20253  df-subrg 20587  df-fldext 33670
This theorem is referenced by:  extdgmul  33689  finexttrb  33690  fldext2chn  33734
  Copyright terms: Public domain W3C validator