Proof of Theorem fldexttr
Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹/FldExt𝐾) |
2 | | simpl 483 |
. . . . . . 7
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐹) |
3 | | fldextfld2 31725 |
. . . . . . 7
⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 ∈ Field) |
5 | | fldextfld2 31725 |
. . . . . . 7
⊢ (𝐹/FldExt𝐾 → 𝐾 ∈ Field) |
6 | 1, 5 | syl 17 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 ∈ Field) |
7 | | brfldext 31722 |
. . . . . 6
⊢ ((𝐹 ∈ Field ∧ 𝐾 ∈ Field) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹)))) |
8 | 4, 6, 7 | syl2anc 584 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹)))) |
9 | 1, 8 | mpbid 231 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐾 = (𝐹 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))) |
10 | 9 | simpld 495 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 = (𝐹 ↾s (Base‘𝐾))) |
11 | | fldextfld1 31724 |
. . . . . . . . 9
⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) |
12 | 2, 11 | syl 17 |
. . . . . . . 8
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸 ∈ Field) |
13 | | brfldext 31722 |
. . . . . . . 8
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
14 | 12, 4, 13 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) |
15 | 2, 14 | mpbid 231 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))) |
16 | 15 | simpld 495 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐹 = (𝐸 ↾s (Base‘𝐹))) |
17 | 16 | oveq1d 7290 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹 ↾s (Base‘𝐾)) = ((𝐸 ↾s (Base‘𝐹)) ↾s
(Base‘𝐾))) |
18 | | fvex 6787 |
. . . . 5
⊢
(Base‘𝐹)
∈ V |
19 | | fvex 6787 |
. . . . 5
⊢
(Base‘𝐾)
∈ V |
20 | | ressress 16958 |
. . . . 5
⊢
(((Base‘𝐹)
∈ V ∧ (Base‘𝐾) ∈ V) → ((𝐸 ↾s (Base‘𝐹)) ↾s
(Base‘𝐾)) = (𝐸 ↾s
((Base‘𝐹) ∩
(Base‘𝐾)))) |
21 | 18, 19, 20 | mp2an 689 |
. . . 4
⊢ ((𝐸 ↾s
(Base‘𝐹))
↾s (Base‘𝐾)) = (𝐸 ↾s ((Base‘𝐹) ∩ (Base‘𝐾))) |
22 | 17, 21 | eqtrdi 2794 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐹 ↾s (Base‘𝐾)) = (𝐸 ↾s ((Base‘𝐹) ∩ (Base‘𝐾)))) |
23 | | incom 4135 |
. . . . 5
⊢
((Base‘𝐾)
∩ (Base‘𝐹)) =
((Base‘𝐹) ∩
(Base‘𝐾)) |
24 | 9 | simprd 496 |
. . . . . . 7
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹)) |
25 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐹) =
(Base‘𝐹) |
26 | 25 | subrgss 20025 |
. . . . . . 7
⊢
((Base‘𝐾)
∈ (SubRing‘𝐹)
→ (Base‘𝐾)
⊆ (Base‘𝐹)) |
27 | 24, 26 | syl 17 |
. . . . . 6
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ⊆ (Base‘𝐹)) |
28 | | df-ss 3904 |
. . . . . 6
⊢
((Base‘𝐾)
⊆ (Base‘𝐹)
↔ ((Base‘𝐾)
∩ (Base‘𝐹)) =
(Base‘𝐾)) |
29 | 27, 28 | sylib 217 |
. . . . 5
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾)) |
30 | 23, 29 | eqtr3id 2792 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → ((Base‘𝐹) ∩ (Base‘𝐾)) = (Base‘𝐾)) |
31 | 30 | oveq2d 7291 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸 ↾s ((Base‘𝐹) ∩ (Base‘𝐾))) = (𝐸 ↾s (Base‘𝐾))) |
32 | 10, 22, 31 | 3eqtrd 2782 |
. 2
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐾 = (𝐸 ↾s (Base‘𝐾))) |
33 | 15 | simprd 496 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸)) |
34 | 16 | fveq2d 6778 |
. . . 4
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
35 | 24, 34 | eleqtrd 2841 |
. . 3
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸 ↾s (Base‘𝐹)))) |
36 | | eqid 2738 |
. . . . 5
⊢ (𝐸 ↾s
(Base‘𝐹)) = (𝐸 ↾s
(Base‘𝐹)) |
37 | 36 | subsubrg 20050 |
. . . 4
⊢
((Base‘𝐹)
∈ (SubRing‘𝐸)
→ ((Base‘𝐾)
∈ (SubRing‘(𝐸
↾s (Base‘𝐹))) ↔ ((Base‘𝐾) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ⊆ (Base‘𝐹)))) |
38 | 37 | simprbda 499 |
. . 3
⊢
(((Base‘𝐹)
∈ (SubRing‘𝐸)
∧ (Base‘𝐾) ∈
(SubRing‘(𝐸
↾s (Base‘𝐹)))) → (Base‘𝐾) ∈ (SubRing‘𝐸)) |
39 | 33, 35, 38 | syl2anc 584 |
. 2
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐸)) |
40 | | brfldext 31722 |
. . 3
⊢ ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) |
41 | 12, 6, 40 | syl2anc 584 |
. 2
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸 ↾s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸)))) |
42 | 32, 39, 41 | mpbir2and 710 |
1
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) |