Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldexttr Structured version   Visualization version   GIF version

Theorem fldexttr 33654
Description: Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
fldexttr ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)

Proof of Theorem fldexttr
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹/FldExt𝐾)
2 simpl 482 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐹)
3 fldextfld2 33644 . . . . . . 7 (𝐸/FldExt𝐹𝐹 ∈ Field)
42, 3syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 ∈ Field)
5 fldextfld2 33644 . . . . . . 7 (𝐹/FldExt𝐾𝐾 ∈ Field)
61, 5syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 ∈ Field)
7 brfldext 33641 . . . . . 6 ((𝐹 ∈ Field ∧ 𝐾 ∈ Field) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
84, 6, 7syl2anc 584 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹/FldExt𝐾 ↔ (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹))))
91, 8mpbid 232 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐾 = (𝐹s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐹)))
109simpld 494 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐹s (Base‘𝐾)))
11 fldextfld1 33643 . . . . . . . . 9 (𝐸/FldExt𝐹𝐸 ∈ Field)
122, 11syl 17 . . . . . . . 8 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸 ∈ Field)
13 brfldext 33641 . . . . . . . 8 ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
1412, 4, 13syl2anc 584 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸))))
152, 14mpbid 232 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹 = (𝐸s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))
1615simpld 494 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐹 = (𝐸s (Base‘𝐹)))
1716oveq1d 7402 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)))
18 fvex 6871 . . . . 5 (Base‘𝐹) ∈ V
19 fvex 6871 . . . . 5 (Base‘𝐾) ∈ V
20 ressress 17217 . . . . 5 (((Base‘𝐹) ∈ V ∧ (Base‘𝐾) ∈ V) → ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
2118, 19, 20mp2an 692 . . . 4 ((𝐸s (Base‘𝐹)) ↾s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾)))
2217, 21eqtrdi 2780 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐹s (Base‘𝐾)) = (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))))
23 incom 4172 . . . . 5 ((Base‘𝐾) ∩ (Base‘𝐹)) = ((Base‘𝐹) ∩ (Base‘𝐾))
249simprd 495 . . . . . . 7 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐹))
25 eqid 2729 . . . . . . . 8 (Base‘𝐹) = (Base‘𝐹)
2625subrgss 20481 . . . . . . 7 ((Base‘𝐾) ∈ (SubRing‘𝐹) → (Base‘𝐾) ⊆ (Base‘𝐹))
2724, 26syl 17 . . . . . 6 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ⊆ (Base‘𝐹))
28 dfss2 3932 . . . . . 6 ((Base‘𝐾) ⊆ (Base‘𝐹) ↔ ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
2927, 28sylib 218 . . . . 5 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐾) ∩ (Base‘𝐹)) = (Base‘𝐾))
3023, 29eqtr3id 2778 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → ((Base‘𝐹) ∩ (Base‘𝐾)) = (Base‘𝐾))
3130oveq2d 7403 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸s ((Base‘𝐹) ∩ (Base‘𝐾))) = (𝐸s (Base‘𝐾)))
3210, 22, 313eqtrd 2768 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐾 = (𝐸s (Base‘𝐾)))
3315simprd 495 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐹) ∈ (SubRing‘𝐸))
3416fveq2d 6862 . . . 4 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (SubRing‘𝐹) = (SubRing‘(𝐸s (Base‘𝐹))))
3524, 34eleqtrd 2830 . . 3 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))))
36 eqid 2729 . . . . 5 (𝐸s (Base‘𝐹)) = (𝐸s (Base‘𝐹))
3736subsubrg 20507 . . . 4 ((Base‘𝐹) ∈ (SubRing‘𝐸) → ((Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹))) ↔ ((Base‘𝐾) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ⊆ (Base‘𝐹))))
3837simprbda 498 . . 3 (((Base‘𝐹) ∈ (SubRing‘𝐸) ∧ (Base‘𝐾) ∈ (SubRing‘(𝐸s (Base‘𝐹)))) → (Base‘𝐾) ∈ (SubRing‘𝐸))
3933, 35, 38syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (Base‘𝐾) ∈ (SubRing‘𝐸))
40 brfldext 33641 . . 3 ((𝐸 ∈ Field ∧ 𝐾 ∈ Field) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4112, 6, 40syl2anc 584 . 2 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → (𝐸/FldExt𝐾 ↔ (𝐾 = (𝐸s (Base‘𝐾)) ∧ (Base‘𝐾) ∈ (SubRing‘𝐸))))
4232, 39, 41mpbir2and 713 1 ((𝐸/FldExt𝐹𝐹/FldExt𝐾) → 𝐸/FldExt𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  SubRingcsubrg 20478  Fieldcfield 20639  /FldExtcfldext 33634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-subg 19055  df-mgp 20050  df-ur 20091  df-ring 20144  df-subrg 20479  df-fldext 33637
This theorem is referenced by:  extdgmul  33659  finexttrb  33660  fldext2chn  33718
  Copyright terms: Public domain W3C validator