![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brovmptimex1 | Structured version Visualization version GIF version |
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) |
Ref | Expression |
---|---|
brovmptimex.mpt | ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) |
brovmptimex.br | ⊢ (𝜑 → 𝐴𝑅𝐵) |
brovmptimex.ov | ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) |
Ref | Expression |
---|---|
brovmptimex1 | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brovmptimex.mpt | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) | |
2 | brovmptimex.br | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | brovmptimex.ov | . . 3 ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) | |
4 | 1, 2, 3 | brovmptimex 43370 | . 2 ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
5 | 4 | simpld 494 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 class class class wbr 5142 (class class class)co 7414 ∈ cmpo 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-dm 5682 df-iota 6494 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |