Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brovmptimex1 | Structured version Visualization version GIF version |
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.) |
Ref | Expression |
---|---|
brovmptimex.mpt | ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) |
brovmptimex.br | ⊢ (𝜑 → 𝐴𝑅𝐵) |
brovmptimex.ov | ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) |
Ref | Expression |
---|---|
brovmptimex1 | ⊢ (𝜑 → 𝐶 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brovmptimex.mpt | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐸, 𝑦 ∈ 𝐺 ↦ 𝐻) | |
2 | brovmptimex.br | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
3 | brovmptimex.ov | . . 3 ⊢ (𝜑 → 𝑅 = (𝐶𝐹𝐷)) | |
4 | 1, 2, 3 | brovmptimex 41644 | . 2 ⊢ (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V)) |
5 | 4 | simpld 495 | 1 ⊢ (𝜑 → 𝐶 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3433 class class class wbr 5075 (class class class)co 7284 ∈ cmpo 7286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-xp 5596 df-rel 5597 df-dm 5600 df-iota 6395 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |