Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brovmptimex2 Structured version   Visualization version   GIF version

Theorem brovmptimex2 43696
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.)
Hypotheses
Ref Expression
brovmptimex.mpt 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
brovmptimex.br (𝜑𝐴𝑅𝐵)
brovmptimex.ov (𝜑𝑅 = (𝐶𝐹𝐷))
Assertion
Ref Expression
brovmptimex2 (𝜑𝐷 ∈ V)
Distinct variable groups:   𝑥,𝐸,𝑦   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem brovmptimex2
StepHypRef Expression
1 brovmptimex.mpt . . 3 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
2 brovmptimex.br . . 3 (𝜑𝐴𝑅𝐵)
3 brovmptimex.ov . . 3 (𝜑𝑅 = (𝐶𝐹𝐷))
41, 2, 3brovmptimex 43694 . 2 (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
54simprd 494 1 (𝜑𝐷 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3462   class class class wbr 5153  (class class class)co 7424  cmpo 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-xp 5688  df-rel 5689  df-dm 5692  df-iota 6506  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429
This theorem is referenced by:  ntrneibex  43740
  Copyright terms: Public domain W3C validator