Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brovmptimex2 Structured version   Visualization version   GIF version

Theorem brovmptimex2 43269
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.)
Hypotheses
Ref Expression
brovmptimex.mpt 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
brovmptimex.br (𝜑𝐴𝑅𝐵)
brovmptimex.ov (𝜑𝑅 = (𝐶𝐹𝐷))
Assertion
Ref Expression
brovmptimex2 (𝜑𝐷 ∈ V)
Distinct variable groups:   𝑥,𝐸,𝑦   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem brovmptimex2
StepHypRef Expression
1 brovmptimex.mpt . . 3 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
2 brovmptimex.br . . 3 (𝜑𝐴𝑅𝐵)
3 brovmptimex.ov . . 3 (𝜑𝑅 = (𝐶𝐹𝐷))
41, 2, 3brovmptimex 43267 . 2 (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
54simprd 495 1 (𝜑𝐷 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3466   class class class wbr 5138  (class class class)co 7401  cmpo 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-dm 5676  df-iota 6485  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406
This theorem is referenced by:  ntrneibex  43313
  Copyright terms: Public domain W3C validator