Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brovmptimex2 Structured version   Visualization version   GIF version

Theorem brovmptimex2 44019
Description: If a binary relation holds and the relation is the value of a binary operation built with maps-to, then the arguments to that operation are sets. (Contributed by RP, 22-May-2021.)
Hypotheses
Ref Expression
brovmptimex.mpt 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
brovmptimex.br (𝜑𝐴𝑅𝐵)
brovmptimex.ov (𝜑𝑅 = (𝐶𝐹𝐷))
Assertion
Ref Expression
brovmptimex2 (𝜑𝐷 ∈ V)
Distinct variable groups:   𝑥,𝐸,𝑦   𝑦,𝐹
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem brovmptimex2
StepHypRef Expression
1 brovmptimex.mpt . . 3 𝐹 = (𝑥𝐸, 𝑦𝐺𝐻)
2 brovmptimex.br . . 3 (𝜑𝐴𝑅𝐵)
3 brovmptimex.ov . . 3 (𝜑𝑅 = (𝐶𝐹𝐷))
41, 2, 3brovmptimex 44017 . 2 (𝜑 → (𝐶 ∈ V ∧ 𝐷 ∈ V))
54simprd 495 1 (𝜑𝐷 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478   class class class wbr 5148  (class class class)co 7431  cmpo 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  ntrneibex  44063
  Copyright terms: Public domain W3C validator