MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numwdom Structured version   Visualization version   GIF version

Theorem numwdom 10128
Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
numwdom ((𝐴 ∈ dom card ∧ 𝐵* 𝐴) → 𝐵 ∈ dom card)

Proof of Theorem numwdom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brwdomi 9637 . 2 (𝐵* 𝐴 → (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴onto𝐵))
2 simpr 484 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 = ∅)
3 0fi 9108 . . . . 5 ∅ ∈ Fin
4 finnum 10017 . . . . 5 (∅ ∈ Fin → ∅ ∈ dom card)
53, 4ax-mp 5 . . . 4 ∅ ∈ dom card
62, 5eqeltrdi 2852 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 ∈ dom card)
7 fonum 10127 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝑓:𝐴onto𝐵) → 𝐵 ∈ dom card)
87ex 412 . . . . 5 (𝐴 ∈ dom card → (𝑓:𝐴onto𝐵𝐵 ∈ dom card))
98exlimdv 1932 . . . 4 (𝐴 ∈ dom card → (∃𝑓 𝑓:𝐴onto𝐵𝐵 ∈ dom card))
109imp 406 . . 3 ((𝐴 ∈ dom card ∧ ∃𝑓 𝑓:𝐴onto𝐵) → 𝐵 ∈ dom card)
116, 10jaodan 958 . 2 ((𝐴 ∈ dom card ∧ (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴onto𝐵)) → 𝐵 ∈ dom card)
121, 11sylan2 592 1 ((𝐴 ∈ dom card ∧ 𝐵* 𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  c0 4352   class class class wbr 5166  dom cdm 5700  ontowfo 6571  Fincfn 9003  * cwdom 9633  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-fin 9007  df-wdom 9634  df-card 10008  df-acn 10011
This theorem is referenced by:  ptcmplem2  24082
  Copyright terms: Public domain W3C validator