Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numwdom Structured version   Visualization version   GIF version

Theorem numwdom 9520
 Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
numwdom ((𝐴 ∈ dom card ∧ 𝐵* 𝐴) → 𝐵 ∈ dom card)

Proof of Theorem numwdom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brwdomi 9066 . 2 (𝐵* 𝐴 → (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴onto𝐵))
2 simpr 489 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 = ∅)
3 0fin 8741 . . . . 5 ∅ ∈ Fin
4 finnum 9411 . . . . 5 (∅ ∈ Fin → ∅ ∈ dom card)
53, 4ax-mp 5 . . . 4 ∅ ∈ dom card
62, 5eqeltrdi 2861 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 ∈ dom card)
7 fonum 9519 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝑓:𝐴onto𝐵) → 𝐵 ∈ dom card)
87ex 417 . . . . 5 (𝐴 ∈ dom card → (𝑓:𝐴onto𝐵𝐵 ∈ dom card))
98exlimdv 1935 . . . 4 (𝐴 ∈ dom card → (∃𝑓 𝑓:𝐴onto𝐵𝐵 ∈ dom card))
109imp 411 . . 3 ((𝐴 ∈ dom card ∧ ∃𝑓 𝑓:𝐴onto𝐵) → 𝐵 ∈ dom card)
116, 10jaodan 956 . 2 ((𝐴 ∈ dom card ∧ (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴onto𝐵)) → 𝐵 ∈ dom card)
121, 11sylan2 596 1 ((𝐴 ∈ dom card ∧ 𝐵* 𝐴) → 𝐵 ∈ dom card)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∨ wo 845   = wceq 1539  ∃wex 1782   ∈ wcel 2112  ∅c0 4226   class class class wbr 5033  dom cdm 5525  –onto→wfo 6334  Fincfn 8528   ≼* cwdom 9062  cardccrd 9398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-fin 8532  df-wdom 9063  df-card 9402  df-acn 9405 This theorem is referenced by:  ptcmplem2  22754
 Copyright terms: Public domain W3C validator