| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numwdom | Structured version Visualization version GIF version | ||
| Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| numwdom | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brwdomi 9463 | . 2 ⊢ (𝐵 ≼* 𝐴 → (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴–onto→𝐵)) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 = ∅) | |
| 3 | 0fi 8973 | . . . . 5 ⊢ ∅ ∈ Fin | |
| 4 | finnum 9850 | . . . . 5 ⊢ (∅ ∈ Fin → ∅ ∈ dom card) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ∅ ∈ dom card |
| 6 | 2, 5 | eqeltrdi 2841 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 ∈ dom card) |
| 7 | fonum 9958 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ dom card) | |
| 8 | 7 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ dom card)) |
| 9 | 8 | exlimdv 1934 | . . . 4 ⊢ (𝐴 ∈ dom card → (∃𝑓 𝑓:𝐴–onto→𝐵 → 𝐵 ∈ dom card)) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ dom card) |
| 11 | 6, 10 | jaodan 959 | . 2 ⊢ ((𝐴 ∈ dom card ∧ (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴–onto→𝐵)) → 𝐵 ∈ dom card) |
| 12 | 1, 11 | sylan2 593 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∅c0 4282 class class class wbr 5095 dom cdm 5621 –onto→wfo 6486 Fincfn 8877 ≼* cwdom 9459 cardccrd 9837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-fin 8881 df-wdom 9460 df-card 9841 df-acn 9844 |
| This theorem is referenced by: ptcmplem2 23971 |
| Copyright terms: Public domain | W3C validator |