![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numwdom | Structured version Visualization version GIF version |
Description: A surjection maps numerable sets to numerable sets. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
numwdom | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brwdomi 9569 | . 2 ⊢ (𝐵 ≼* 𝐴 → (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴–onto→𝐵)) | |
2 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 = ∅) | |
3 | 0fin 9177 | . . . . 5 ⊢ ∅ ∈ Fin | |
4 | finnum 9949 | . . . . 5 ⊢ (∅ ∈ Fin → ∅ ∈ dom card) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ∅ ∈ dom card |
6 | 2, 5 | eqeltrdi 2840 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 = ∅) → 𝐵 ∈ dom card) |
7 | fonum 10059 | . . . . . 6 ⊢ ((𝐴 ∈ dom card ∧ 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ dom card) | |
8 | 7 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ dom card → (𝑓:𝐴–onto→𝐵 → 𝐵 ∈ dom card)) |
9 | 8 | exlimdv 1935 | . . . 4 ⊢ (𝐴 ∈ dom card → (∃𝑓 𝑓:𝐴–onto→𝐵 → 𝐵 ∈ dom card)) |
10 | 9 | imp 406 | . . 3 ⊢ ((𝐴 ∈ dom card ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) → 𝐵 ∈ dom card) |
11 | 6, 10 | jaodan 955 | . 2 ⊢ ((𝐴 ∈ dom card ∧ (𝐵 = ∅ ∨ ∃𝑓 𝑓:𝐴–onto→𝐵)) → 𝐵 ∈ dom card) |
12 | 1, 11 | sylan2 592 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼* 𝐴) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∅c0 4322 class class class wbr 5148 dom cdm 5676 –onto→wfo 6541 Fincfn 8945 ≼* cwdom 9565 cardccrd 9936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-fin 8949 df-wdom 9566 df-card 9940 df-acn 9943 |
This theorem is referenced by: ptcmplem2 23877 |
Copyright terms: Public domain | W3C validator |