Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle2 Structured version   Visualization version   GIF version

Theorem brsegle2 33698
 Description: Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
Distinct variable groups:   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brsegle2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 brsegle 33697 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
2 simprl 770 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
3 simpl1 1188 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
4 simpl3l 1225 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 simpl3r 1226 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
6 simpr 488 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
7 btwncolinear2 33659 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
83, 4, 5, 6, 7syl13anc 1369 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
98adantr 484 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
102, 9mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 Colinear ⟨𝑦, 𝐷⟩)
11 simpl2l 1223 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
12 simpl2r 1224 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
13 simprr 772 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
143, 11, 12, 4, 6, 13cgrcomand 33580 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)
15 simpl2 1189 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
16 lineext 33665 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
173, 4, 6, 5, 15, 16syl131anc 1380 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1817adantr 484 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1910, 14, 18mp2and 698 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
20 an32 645 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)))
21 simpll1 1209 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
22 simpl3l 1225 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
2322adantr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
24 simpr 488 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
25 simpl3r 1226 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
2625adantr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
27 simpl2l 1223 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2827adantr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
29 simpl2r 1224 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
3029adantr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
31 simplr 768 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
32 brcgr3 33635 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3321, 23, 24, 26, 28, 30, 31, 32syl133anc 1390 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3433adantr 484 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
35 simp2l 1196 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
36 simp3 1135 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩))
37333ad2ant1 1130 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3836, 37mpbird 260 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
39 btwnxfr 33645 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4021, 23, 24, 26, 28, 30, 31, 39syl133anc 1390 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
41403ad2ant1 1130 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4235, 38, 41mp2and 698 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
43 simp32 1207 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩)
44 cgrcom 33579 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4521, 23, 26, 28, 31, 44syl122anc 1376 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
46453ad2ant1 1130 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4743, 46mpbid 235 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
4842, 47jca 515 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
49483expia 1118 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5034, 49sylbid 243 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5120, 50sylanb 584 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5251an32s 651 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5352reximdva 3233 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5419, 53mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
5554rexlimdva2 3246 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
56 simprl 770 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
57 simpll1 1209 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑁 ∈ ℕ)
5827adantr 484 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 ∈ (𝔼‘𝑁))
59 simplr 768 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 ∈ (𝔼‘𝑁))
6029adantr 484 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 ∈ (𝔼‘𝑁))
61 btwncolinear1 33658 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6257, 58, 59, 60, 61syl13anc 1369 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6356, 62mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 Colinear ⟨𝑥, 𝐵⟩)
64 simprr 772 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
65 simpl1 1188 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
66 simpr 488 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
67 simpl3 1190 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
68 lineext 33665 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
6965, 27, 66, 29, 67, 68syl131anc 1380 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7069adantr 484 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7163, 64, 70mp2and 698 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩)
7227, 66, 293jca 1125 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
7372adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
74 brcgr3 33635 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7521, 73, 23, 26, 24, 74syl113anc 1379 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7675adantr 484 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
77 simp2l 1196 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
78 simp32 1207 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
79 simp2r 1197 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
80 simp33 1208 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)
81 cgrcomlr 33587 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8221, 31, 30, 26, 24, 81syl122anc 1376 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
83823ad2ant1 1130 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8480, 83mpbid 235 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)
8578, 79, 843jca 1125 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
86 brcgr3 33635 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
8721, 28, 30, 31, 23, 24, 26, 86syl133anc 1390 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
88873ad2ant1 1130 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
8985, 88mpbird 260 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩)
90 btwnxfr 33645 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9121, 28, 30, 31, 23, 24, 26, 90syl133anc 1390 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
92913ad2ant1 1130 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9377, 89, 92mp2and 698 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
9493, 78jca 515 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
95943expia 1118 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9676, 95sylbid 243 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9796an32s 651 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9897reximdva 3233 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9971, 98mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
10099rexlimdva2 3246 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
10155, 100impbid 215 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
1021, 101bitrd 282 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   ∈ wcel 2111  ∃wrex 3107  ⟨cop 4531   class class class wbr 5031  ‘cfv 6325  ℕcn 11628  𝔼cee 26692   Btwn cbtwn 26693  Cgrccgr 26694  Cgr3ccgr3 33625   Colinear ccolin 33626   Seg≤ csegle 33695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-seq 13368  df-exp 13429  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-ee 26695  df-btwn 26696  df-cgr 26697  df-ofs 33572  df-colinear 33628  df-ifs 33629  df-cgr3 33630  df-segle 33696 This theorem is referenced by:  segleantisym  33704  seglelin  33705  outsidele  33721
 Copyright terms: Public domain W3C validator