Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle2 Structured version   Visualization version   GIF version

Theorem brsegle2 36082
Description: Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
Distinct variable groups:   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brsegle2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 brsegle 36081 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
2 simprl 770 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
3 simpl1 1192 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
4 simpl3l 1229 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 simpl3r 1230 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
6 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
7 btwncolinear2 36043 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
83, 4, 5, 6, 7syl13anc 1374 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
98adantr 480 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
102, 9mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 Colinear ⟨𝑦, 𝐷⟩)
11 simpl2l 1227 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
12 simpl2r 1228 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
13 simprr 772 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
143, 11, 12, 4, 6, 13cgrcomand 35964 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)
15 simpl2 1193 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
16 lineext 36049 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
173, 4, 6, 5, 15, 16syl131anc 1385 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1817adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1910, 14, 18mp2and 699 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
20 an32 646 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)))
21 simpll1 1213 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
22 simpl3l 1229 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
2322adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
24 simpr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
25 simpl3r 1230 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
2625adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
27 simpl2l 1227 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2827adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
29 simpl2r 1228 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
3029adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
31 simplr 768 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
32 brcgr3 36019 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3321, 23, 24, 26, 28, 30, 31, 32syl133anc 1395 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3433adantr 480 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
35 simp2l 1200 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
36 simp3 1138 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩))
37333ad2ant1 1133 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3836, 37mpbird 257 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
39 btwnxfr 36029 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4021, 23, 24, 26, 28, 30, 31, 39syl133anc 1395 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
41403ad2ant1 1133 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4235, 38, 41mp2and 699 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
43 simp32 1211 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩)
44 cgrcom 35963 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4521, 23, 26, 28, 31, 44syl122anc 1381 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
46453ad2ant1 1133 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4743, 46mpbid 232 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
4842, 47jca 511 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
49483expia 1121 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5034, 49sylbid 240 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5120, 50sylanb 581 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5251an32s 652 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5352reximdva 3142 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5419, 53mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
5554rexlimdva2 3132 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
56 simprl 770 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
57 simpll1 1213 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑁 ∈ ℕ)
5827adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 ∈ (𝔼‘𝑁))
59 simplr 768 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 ∈ (𝔼‘𝑁))
6029adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 ∈ (𝔼‘𝑁))
61 btwncolinear1 36042 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6257, 58, 59, 60, 61syl13anc 1374 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6356, 62mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 Colinear ⟨𝑥, 𝐵⟩)
64 simprr 772 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
65 simpl1 1192 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
66 simpr 484 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
67 simpl3 1194 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
68 lineext 36049 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
6965, 27, 66, 29, 67, 68syl131anc 1385 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7069adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7163, 64, 70mp2and 699 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩)
7227, 66, 293jca 1128 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
7372adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
74 brcgr3 36019 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7521, 73, 23, 26, 24, 74syl113anc 1384 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7675adantr 480 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
77 simp2l 1200 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
78 simp32 1211 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
79 simp2r 1201 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
80 simp33 1212 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)
81 cgrcomlr 35971 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8221, 31, 30, 26, 24, 81syl122anc 1381 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
83823ad2ant1 1133 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8480, 83mpbid 232 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)
8578, 79, 843jca 1128 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
86 brcgr3 36019 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
8721, 28, 30, 31, 23, 24, 26, 86syl133anc 1395 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
88873ad2ant1 1133 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
8985, 88mpbird 257 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩)
90 btwnxfr 36029 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9121, 28, 30, 31, 23, 24, 26, 90syl133anc 1395 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
92913ad2ant1 1133 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9377, 89, 92mp2and 699 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
9493, 78jca 511 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
95943expia 1121 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9676, 95sylbid 240 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9796an32s 652 . . . . . 6 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9897reximdva 3142 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9971, 98mpd 15 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
10099rexlimdva2 3132 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
10155, 100impbid 212 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
1021, 101bitrd 279 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wrex 3053  cop 4585   class class class wbr 5095  cfv 6486  cn 12146  𝔼cee 28851   Btwn cbtwn 28852  Cgrccgr 28853  Cgr3ccgr3 36009   Colinear ccolin 36010   Seg csegle 36079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-ee 28854  df-btwn 28855  df-cgr 28856  df-ofs 35956  df-colinear 36012  df-ifs 36013  df-cgr3 36014  df-segle 36080
This theorem is referenced by:  segleantisym  36088  seglelin  36089  outsidele  36105
  Copyright terms: Public domain W3C validator