Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle2 Structured version   Visualization version   GIF version

Theorem brsegle2 32559
Description: Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
Distinct variable groups:   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brsegle2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 brsegle 32558 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
2 simprl 778 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
3 simpl1 1235 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
4 simpl3l 1294 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 simpl3r 1296 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
6 simpr 473 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
7 btwncolinear2 32520 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
83, 4, 5, 6, 7syl13anc 1484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
98adantr 468 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
102, 9mpd 15 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 Colinear ⟨𝑦, 𝐷⟩)
11 simpl2l 1290 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
12 simpl2r 1292 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
13 simprr 780 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
143, 11, 12, 4, 6, 13cgrcomand 32441 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)
15 simpl2 1237 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
16 lineext 32526 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
173, 4, 6, 5, 15, 16syl131anc 1495 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1817adantr 468 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1910, 14, 18mp2and 682 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
20 an32 628 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)))
21 simpll1 1262 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
22 simpl3l 1294 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
2322adantr 468 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
24 simpr 473 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
25 simpl3r 1296 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
2625adantr 468 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
27 simpl2l 1290 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2827adantr 468 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
29 simpl2r 1292 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
3029adantr 468 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
31 simplr 776 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
32 brcgr3 32496 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3321, 23, 24, 26, 28, 30, 31, 32syl133anc 1505 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3433adantr 468 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
35 simp2l 1249 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
36 simp3 1161 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩))
37333ad2ant1 1156 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3836, 37mpbird 248 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
39 btwnxfr 32506 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4021, 23, 24, 26, 28, 30, 31, 39syl133anc 1505 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
41403ad2ant1 1156 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4235, 38, 41mp2and 682 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
43 simp32 1260 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩)
44 cgrcom 32440 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4521, 23, 26, 28, 31, 44syl122anc 1491 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
46453ad2ant1 1156 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4743, 46mpbid 223 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
4842, 47jca 503 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
49483expia 1143 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5034, 49sylbid 231 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5120, 50sylanb 572 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5251an32s 634 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5352reximdva 3215 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5419, 53mpd 15 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
5554ex 399 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5655rexlimdva 3230 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
57 simprl 778 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
58 simpll1 1262 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑁 ∈ ℕ)
5927adantr 468 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 ∈ (𝔼‘𝑁))
60 simplr 776 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 ∈ (𝔼‘𝑁))
6129adantr 468 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 ∈ (𝔼‘𝑁))
62 btwncolinear1 32519 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6358, 59, 60, 61, 62syl13anc 1484 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6457, 63mpd 15 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 Colinear ⟨𝑥, 𝐵⟩)
65 simprr 780 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
66 simpl1 1235 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
67 simpr 473 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
68 simpl3 1239 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
69 lineext 32526 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7066, 27, 67, 29, 68, 69syl131anc 1495 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7170adantr 468 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7264, 65, 71mp2and 682 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩)
7327, 67, 293jca 1151 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
7473adantr 468 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
75 brcgr3 32496 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7621, 74, 23, 26, 24, 75syl113anc 1494 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7776adantr 468 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
78 simp2l 1249 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
79 simp32 1260 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
80 simp2r 1250 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
81 simp33 1261 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)
82 cgrcomlr 32448 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8321, 31, 30, 26, 24, 82syl122anc 1491 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
84833ad2ant1 1156 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8581, 84mpbid 223 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)
8679, 80, 853jca 1151 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
87 brcgr3 32496 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
8821, 28, 30, 31, 23, 24, 26, 87syl133anc 1505 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
89883ad2ant1 1156 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
9086, 89mpbird 248 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩)
91 btwnxfr 32506 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9221, 28, 30, 31, 23, 24, 26, 91syl133anc 1505 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
93923ad2ant1 1156 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9478, 90, 93mp2and 682 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
9594, 79jca 503 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
96953expia 1143 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9777, 96sylbid 231 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9897an32s 634 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9998reximdva 3215 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
10072, 99mpd 15 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
101100ex 399 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
102101rexlimdva 3230 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
10356, 102impbid 203 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
1041, 103bitrd 270 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100  wcel 2157  wrex 3108  cop 4387   class class class wbr 4855  cfv 6111  cn 11315  𝔼cee 26005   Btwn cbtwn 26006  Cgrccgr 26007  Cgr3ccgr3 32486   Colinear ccolin 32487   Seg csegle 32556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-inf2 8795  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308  ax-pre-sup 10309
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-se 5284  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-isom 6120  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-1st 7408  df-2nd 7409  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-oadd 7810  df-er 7989  df-map 8104  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-sup 8597  df-oi 8664  df-card 9058  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-div 10980  df-nn 11316  df-2 11376  df-3 11377  df-n0 11580  df-z 11664  df-uz 11925  df-rp 12067  df-ico 12419  df-icc 12420  df-fz 12570  df-fzo 12710  df-seq 13045  df-exp 13104  df-hash 13358  df-cj 14082  df-re 14083  df-im 14084  df-sqrt 14218  df-abs 14219  df-clim 14462  df-sum 14660  df-ee 26008  df-btwn 26009  df-cgr 26010  df-ofs 32433  df-colinear 32489  df-ifs 32490  df-cgr3 32491  df-segle 32557
This theorem is referenced by:  segleantisym  32565  seglelin  32566  outsidele  32582
  Copyright terms: Public domain W3C validator