Step | Hyp | Ref
| Expression |
1 | | brsegle 34410 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
2 | | simprl 768 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → 𝑦 Btwn 〈𝐶, 𝐷〉) |
3 | | simpl1 1190 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
4 | | simpl3l 1227 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
5 | | simpl3r 1228 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
6 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁)) |
7 | | btwncolinear2 34372 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑦 Btwn 〈𝐶, 𝐷〉 → 𝐶 Colinear 〈𝑦, 𝐷〉)) |
8 | 3, 4, 5, 6, 7 | syl13anc 1371 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑦 Btwn 〈𝐶, 𝐷〉 → 𝐶 Colinear 〈𝑦, 𝐷〉)) |
9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → (𝑦 Btwn 〈𝐶, 𝐷〉 → 𝐶 Colinear 〈𝑦, 𝐷〉)) |
10 | 2, 9 | mpd 15 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → 𝐶 Colinear 〈𝑦, 𝐷〉) |
11 | | simpl2l 1225 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
12 | | simpl2r 1226 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
13 | | simprr 770 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) |
14 | 3, 11, 12, 4, 6, 13 | cgrcomand 34293 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → 〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉) |
15 | | simpl2 1191 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) |
16 | | lineext 34378 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶 Colinear 〈𝑦, 𝐷〉 ∧ 〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉) → ∃𝑥 ∈ (𝔼‘𝑁)〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉)) |
17 | 3, 4, 6, 5, 15, 16 | syl131anc 1382 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐶 Colinear 〈𝑦, 𝐷〉 ∧ 〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉) → ∃𝑥 ∈ (𝔼‘𝑁)〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉)) |
18 | 17 | adantr 481 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → ((𝐶 Colinear 〈𝑦, 𝐷〉 ∧ 〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉) → ∃𝑥 ∈ (𝔼‘𝑁)〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉)) |
19 | 10, 14, 18 | mp2and 696 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → ∃𝑥 ∈ (𝔼‘𝑁)〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉) |
20 | | an32 643 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁))) |
21 | | simpll1 1211 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
22 | | simpl3l 1227 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
23 | 22 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁)) |
24 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁)) |
25 | | simpl3r 1228 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
26 | 25 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
27 | | simpl2l 1225 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
28 | 27 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
29 | | simpl2r 1226 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
30 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
31 | | simplr 766 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁)) |
32 | | brcgr3 34348 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 ↔ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉))) |
33 | 21, 23, 24, 26, 28, 30, 31, 32 | syl133anc 1392 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 ↔ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉))) |
34 | 33 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 ↔ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉))) |
35 | | simp2l 1198 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → 𝑦 Btwn 〈𝐶, 𝐷〉) |
36 | | simp3 1137 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) |
37 | 33 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 ↔ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉))) |
38 | 36, 37 | mpbird 256 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉) |
39 | | btwnxfr 34358 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉) → 𝐵 Btwn 〈𝐴, 𝑥〉)) |
40 | 21, 23, 24, 26, 28, 30, 31, 39 | syl133anc 1392 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉) → 𝐵 Btwn 〈𝐴, 𝑥〉)) |
41 | 40 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → ((𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉) → 𝐵 Btwn 〈𝐴, 𝑥〉)) |
42 | 35, 38, 41 | mp2and 696 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → 𝐵 Btwn 〈𝐴, 𝑥〉) |
43 | | simp32 1209 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉) |
44 | | cgrcom 34292 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ↔ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) |
45 | 21, 23, 26, 28, 31, 44 | syl122anc 1378 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ↔ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) |
46 | 45 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → (〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ↔ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) |
47 | 43, 46 | mpbid 231 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) |
48 | 42, 47 | jca 512 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ∧ (〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉)) → (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) |
49 | 48 | 3expia 1120 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → ((〈𝐶, 𝑦〉Cgr〈𝐴, 𝐵〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝑥〉 ∧ 〈𝑦, 𝐷〉Cgr〈𝐵, 𝑥〉) → (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |
50 | 34, 49 | sylbid 239 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 → (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |
51 | 20, 50 | sylanb 581 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 → (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |
52 | 51 | an32s 649 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 → (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |
53 | 52 | reximdva 3203 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → (∃𝑥 ∈ (𝔼‘𝑁)〈𝐶, 〈𝑦, 𝐷〉〉Cgr3〈𝐴, 〈𝐵, 𝑥〉〉 → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |
54 | 19, 53 | mpd 15 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) |
55 | 54 | rexlimdva2 3216 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |
56 | | simprl 768 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → 𝐵 Btwn 〈𝐴, 𝑥〉) |
57 | | simpll1 1211 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → 𝑁 ∈ ℕ) |
58 | 27 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → 𝐴 ∈ (𝔼‘𝑁)) |
59 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → 𝑥 ∈ (𝔼‘𝑁)) |
60 | 29 | adantr 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → 𝐵 ∈ (𝔼‘𝑁)) |
61 | | btwncolinear1 34371 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝑥〉 → 𝐴 Colinear 〈𝑥, 𝐵〉)) |
62 | 57, 58, 59, 60, 61 | syl13anc 1371 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → (𝐵 Btwn 〈𝐴, 𝑥〉 → 𝐴 Colinear 〈𝑥, 𝐵〉)) |
63 | 56, 62 | mpd 15 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → 𝐴 Colinear 〈𝑥, 𝐵〉) |
64 | | simprr 770 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) |
65 | | simpl1 1190 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
66 | | simpr 485 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁)) |
67 | | simpl3 1192 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) |
68 | | lineext 34378 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear 〈𝑥, 𝐵〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) → ∃𝑦 ∈ (𝔼‘𝑁)〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉)) |
69 | 65, 27, 66, 29, 67, 68 | syl131anc 1382 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐴 Colinear 〈𝑥, 𝐵〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) → ∃𝑦 ∈ (𝔼‘𝑁)〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉)) |
70 | 69 | adantr 481 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → ((𝐴 Colinear 〈𝑥, 𝐵〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) → ∃𝑦 ∈ (𝔼‘𝑁)〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉)) |
71 | 63, 64, 70 | mp2and 696 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → ∃𝑦 ∈ (𝔼‘𝑁)〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉) |
72 | 27, 66, 29 | 3jca 1127 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) |
73 | 72 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) |
74 | | brcgr3 34348 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉 ↔ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉))) |
75 | 21, 73, 23, 26, 24, 74 | syl113anc 1381 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉 ↔ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉))) |
76 | 75 | adantr 481 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → (〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉 ↔ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉))) |
77 | | simp2l 1198 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → 𝐵 Btwn 〈𝐴, 𝑥〉) |
78 | | simp32 1209 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) |
79 | | simp2r 1199 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) |
80 | | simp33 1210 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉) |
81 | | cgrcomlr 34300 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉 ↔ 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉)) |
82 | 21, 31, 30, 26, 24, 81 | syl122anc 1378 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉 ↔ 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉)) |
83 | 82 | 3ad2ant1 1132 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → (〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉 ↔ 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉)) |
84 | 80, 83 | mpbid 231 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉) |
85 | 78, 79, 84 | 3jca 1127 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉)) |
86 | | brcgr3 34348 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝑥〉〉Cgr3〈𝐶, 〈𝑦, 𝐷〉〉 ↔ (〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉))) |
87 | 21, 28, 30, 31, 23, 24, 26, 86 | syl133anc 1392 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (〈𝐴, 〈𝐵, 𝑥〉〉Cgr3〈𝐶, 〈𝑦, 𝐷〉〉 ↔ (〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉))) |
88 | 87 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → (〈𝐴, 〈𝐵, 𝑥〉〉Cgr3〈𝐶, 〈𝑦, 𝐷〉〉 ↔ (〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐵, 𝑥〉Cgr〈𝑦, 𝐷〉))) |
89 | 85, 88 | mpbird 256 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → 〈𝐴, 〈𝐵, 𝑥〉〉Cgr3〈𝐶, 〈𝑦, 𝐷〉〉) |
90 | | btwnxfr 34358 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 〈𝐵, 𝑥〉〉Cgr3〈𝐶, 〈𝑦, 𝐷〉〉) → 𝑦 Btwn 〈𝐶, 𝐷〉)) |
91 | 21, 28, 30, 31, 23, 24, 26, 90 | syl133anc 1392 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 〈𝐵, 𝑥〉〉Cgr3〈𝐶, 〈𝑦, 𝐷〉〉) → 𝑦 Btwn 〈𝐶, 𝐷〉)) |
92 | 91 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → ((𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 〈𝐵, 𝑥〉〉Cgr3〈𝐶, 〈𝑦, 𝐷〉〉) → 𝑦 Btwn 〈𝐶, 𝐷〉)) |
93 | 77, 89, 92 | mp2and 696 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → 𝑦 Btwn 〈𝐶, 𝐷〉) |
94 | 93, 78 | jca 512 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) ∧ (〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉)) → (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) |
95 | 94 | 3expia 1120 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → ((〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉 ∧ 〈𝑥, 𝐵〉Cgr〈𝐷, 𝑦〉) → (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
96 | 76, 95 | sylbid 239 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
𝑦 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → (〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉 → (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
97 | 96 | an32s 649 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁)) ∧
(𝐶 ∈
(𝔼‘𝑁) ∧
𝐷 ∈
(𝔼‘𝑁))) ∧
𝑥 ∈
(𝔼‘𝑁)) ∧
(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉 → (𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
98 | 97 | reximdva 3203 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → (∃𝑦 ∈ (𝔼‘𝑁)〈𝐴, 〈𝑥, 𝐵〉〉Cgr3〈𝐶, 〈𝐷, 𝑦〉〉 → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
99 | 71, 98 | mpd 15 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉)) |
100 | 99 | rexlimdva2 3216 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) |
101 | 55, 100 | impbid 211 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉) ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |
102 | 1, 101 | bitrd 278 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) |