MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpg Structured version   Visualization version   GIF version

Theorem ptcmpg 23561
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23562). (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ptcmpg.1 𝐽 = (∏tβ€˜πΉ)
ptcmpg.2 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
ptcmpg ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ 𝐽 ∈ Comp)

Proof of Theorem ptcmpg
Dummy variables π‘Ž 𝑏 π‘˜ π‘š 𝑛 𝑒 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmpg.1 . 2 𝐽 = (∏tβ€˜πΉ)
2 nfcv 2904 . . . 4 β„²π‘˜(πΉβ€˜π‘Ž)
3 nfcv 2904 . . . 4 β„²π‘Ž(πΉβ€˜π‘˜)
4 nfcv 2904 . . . 4 β„²π‘˜(β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘Ž)) β€œ 𝑏)
5 nfcv 2904 . . . 4 Ⅎ𝑒(β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘Ž)) β€œ 𝑏)
6 nfcv 2904 . . . 4 β„²π‘Ž(β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)
7 nfcv 2904 . . . 4 Ⅎ𝑏(β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒)
8 fveq2 6892 . . . 4 (π‘Ž = π‘˜ β†’ (πΉβ€˜π‘Ž) = (πΉβ€˜π‘˜))
9 fveq2 6892 . . . . . . . 8 (π‘Ž = π‘˜ β†’ (π‘€β€˜π‘Ž) = (π‘€β€˜π‘˜))
109mpteq2dv 5251 . . . . . . 7 (π‘Ž = π‘˜ β†’ (𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘Ž)) = (𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)))
1110cnveqd 5876 . . . . . 6 (π‘Ž = π‘˜ β†’ β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘Ž)) = β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)))
1211imaeq1d 6059 . . . . 5 (π‘Ž = π‘˜ β†’ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘Ž)) β€œ 𝑏) = (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑏))
13 imaeq2 6056 . . . . 5 (𝑏 = 𝑒 β†’ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑏) = (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
1412, 13sylan9eq 2793 . . . 4 ((π‘Ž = π‘˜ ∧ 𝑏 = 𝑒) β†’ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘Ž)) β€œ 𝑏) = (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
152, 3, 4, 5, 6, 7, 8, 14cbvmpox 7502 . . 3 (π‘Ž ∈ 𝐴, 𝑏 ∈ (πΉβ€˜π‘Ž) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘Ž)) β€œ 𝑏)) = (π‘˜ ∈ 𝐴, 𝑒 ∈ (πΉβ€˜π‘˜) ↦ (β—‘(𝑀 ∈ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ↦ (π‘€β€˜π‘˜)) β€œ 𝑒))
16 fveq2 6892 . . . . 5 (𝑛 = π‘š β†’ (πΉβ€˜π‘›) = (πΉβ€˜π‘š))
1716unieqd 4923 . . . 4 (𝑛 = π‘š β†’ βˆͺ (πΉβ€˜π‘›) = βˆͺ (πΉβ€˜π‘š))
1817cbvixpv 8909 . . 3 X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = Xπ‘š ∈ 𝐴 βˆͺ (πΉβ€˜π‘š)
19 simp1 1137 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ 𝐴 ∈ 𝑉)
20 simp2 1138 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ 𝐹:𝐴⟢Comp)
21 cmptop 22899 . . . . . . . 8 (π‘˜ ∈ Comp β†’ π‘˜ ∈ Top)
2221ssriv 3987 . . . . . . 7 Comp βŠ† Top
23 fss 6735 . . . . . . 7 ((𝐹:𝐴⟢Comp ∧ Comp βŠ† Top) β†’ 𝐹:𝐴⟢Top)
2420, 22, 23sylancl 587 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ 𝐹:𝐴⟢Top)
251ptuni 23098 . . . . . 6 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Top) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = βˆͺ 𝐽)
2619, 24, 25syl2anc 585 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = βˆͺ 𝐽)
27 ptcmpg.2 . . . . 5 𝑋 = βˆͺ 𝐽
2826, 27eqtr4di 2791 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) = 𝑋)
29 simp3 1139 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ 𝑋 ∈ (UFL ∩ dom card))
3028, 29eqeltrd 2834 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ X𝑛 ∈ 𝐴 βˆͺ (πΉβ€˜π‘›) ∈ (UFL ∩ dom card))
3115, 18, 19, 20, 30ptcmplem5 23560 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ (∏tβ€˜πΉ) ∈ Comp)
321, 31eqeltrid 2838 1 ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟢Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) β†’ 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   ∩ cin 3948   βŠ† wss 3949  βˆͺ cuni 4909   ↦ cmpt 5232  β—‘ccnv 5676  dom cdm 5677   β€œ cima 5680  βŸΆwf 6540  β€˜cfv 6544   ∈ cmpo 7411  Xcixp 8891  cardccrd 9930  βˆtcpt 17384  Topctop 22395  Compccmp 22890  UFLcufl 23404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-fin 8943  df-fi 9406  df-wdom 9560  df-card 9934  df-acn 9937  df-topgen 17389  df-pt 17390  df-fbas 20941  df-fg 20942  df-top 22396  df-topon 22413  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-cmp 22891  df-fil 23350  df-ufil 23405  df-ufl 23406  df-flim 23443  df-fcls 23445
This theorem is referenced by:  ptcmp  23562  dfac21  41808
  Copyright terms: Public domain W3C validator