| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmpg | Structured version Visualization version GIF version | ||
| Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23945). (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmpg.1 | ⊢ 𝐽 = (∏t‘𝐹) |
| ptcmpg.2 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ptcmpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmpg.1 | . 2 ⊢ 𝐽 = (∏t‘𝐹) | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑎) | |
| 3 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑎(𝐹‘𝑘) | |
| 4 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑘(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
| 5 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑢(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
| 6 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑎(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
| 7 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑏(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
| 8 | fveq2 6858 | . . . 4 ⊢ (𝑎 = 𝑘 → (𝐹‘𝑎) = (𝐹‘𝑘)) | |
| 9 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑎 = 𝑘 → (𝑤‘𝑎) = (𝑤‘𝑘)) | |
| 10 | 9 | mpteq2dv 5201 | . . . . . . 7 ⊢ (𝑎 = 𝑘 → (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
| 11 | 10 | cnveqd 5839 | . . . . . 6 ⊢ (𝑎 = 𝑘 → ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
| 12 | 11 | imaeq1d 6030 | . . . . 5 ⊢ (𝑎 = 𝑘 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏)) |
| 13 | imaeq2 6027 | . . . . 5 ⊢ (𝑏 = 𝑢 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) | |
| 14 | 12, 13 | sylan9eq 2784 | . . . 4 ⊢ ((𝑎 = 𝑘 ∧ 𝑏 = 𝑢) → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 15 | 2, 3, 4, 5, 6, 7, 8, 14 | cbvmpox 7482 | . . 3 ⊢ (𝑎 ∈ 𝐴, 𝑏 ∈ (𝐹‘𝑎) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 16 | fveq2 6858 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) | |
| 17 | 16 | unieqd 4884 | . . . 4 ⊢ (𝑛 = 𝑚 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑚)) |
| 18 | 17 | cbvixpv 8888 | . . 3 ⊢ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = X𝑚 ∈ 𝐴 ∪ (𝐹‘𝑚) |
| 19 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴 ∈ 𝑉) | |
| 20 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp) | |
| 21 | cmptop 23282 | . . . . . . . 8 ⊢ (𝑘 ∈ Comp → 𝑘 ∈ Top) | |
| 22 | 21 | ssriv 3950 | . . . . . . 7 ⊢ Comp ⊆ Top |
| 23 | fss 6704 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top) | |
| 24 | 20, 22, 23 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top) |
| 25 | 1 | ptuni 23481 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
| 26 | 19, 24, 25 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
| 27 | ptcmpg.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 28 | 26, 27 | eqtr4di 2782 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
| 29 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card)) | |
| 30 | 28, 29 | eqeltrd 2828 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ∈ (UFL ∩ dom card)) |
| 31 | 15, 18, 19, 20, 30 | ptcmplem5 23943 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
| 32 | 1, 31 | eqeltrid 2832 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ∪ cuni 4871 ↦ cmpt 5188 ◡ccnv 5637 dom cdm 5638 “ cima 5641 ⟶wf 6507 ‘cfv 6511 ∈ cmpo 7389 Xcixp 8870 cardccrd 9888 ∏tcpt 17401 Topctop 22780 Compccmp 23273 UFLcufl 23787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-fin 8922 df-fi 9362 df-wdom 9518 df-card 9892 df-acn 9895 df-topgen 17406 df-pt 17407 df-fbas 21261 df-fg 21262 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cmp 23274 df-fil 23733 df-ufil 23788 df-ufl 23789 df-flim 23826 df-fcls 23828 |
| This theorem is referenced by: ptcmp 23945 dfac21 43055 |
| Copyright terms: Public domain | W3C validator |