![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptcmpg | Structured version Visualization version GIF version |
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 24087). (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
ptcmpg.1 | ⊢ 𝐽 = (∏t‘𝐹) |
ptcmpg.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ptcmpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptcmpg.1 | . 2 ⊢ 𝐽 = (∏t‘𝐹) | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑎) | |
3 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑎(𝐹‘𝑘) | |
4 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
5 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑢(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
6 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑎(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
7 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑏(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
8 | fveq2 6920 | . . . 4 ⊢ (𝑎 = 𝑘 → (𝐹‘𝑎) = (𝐹‘𝑘)) | |
9 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑎 = 𝑘 → (𝑤‘𝑎) = (𝑤‘𝑘)) | |
10 | 9 | mpteq2dv 5268 | . . . . . . 7 ⊢ (𝑎 = 𝑘 → (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
11 | 10 | cnveqd 5900 | . . . . . 6 ⊢ (𝑎 = 𝑘 → ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
12 | 11 | imaeq1d 6088 | . . . . 5 ⊢ (𝑎 = 𝑘 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏)) |
13 | imaeq2 6085 | . . . . 5 ⊢ (𝑏 = 𝑢 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) | |
14 | 12, 13 | sylan9eq 2800 | . . . 4 ⊢ ((𝑎 = 𝑘 ∧ 𝑏 = 𝑢) → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
15 | 2, 3, 4, 5, 6, 7, 8, 14 | cbvmpox 7543 | . . 3 ⊢ (𝑎 ∈ 𝐴, 𝑏 ∈ (𝐹‘𝑎) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
16 | fveq2 6920 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) | |
17 | 16 | unieqd 4944 | . . . 4 ⊢ (𝑛 = 𝑚 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑚)) |
18 | 17 | cbvixpv 8973 | . . 3 ⊢ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = X𝑚 ∈ 𝐴 ∪ (𝐹‘𝑚) |
19 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴 ∈ 𝑉) | |
20 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp) | |
21 | cmptop 23424 | . . . . . . . 8 ⊢ (𝑘 ∈ Comp → 𝑘 ∈ Top) | |
22 | 21 | ssriv 4012 | . . . . . . 7 ⊢ Comp ⊆ Top |
23 | fss 6763 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top) | |
24 | 20, 22, 23 | sylancl 585 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top) |
25 | 1 | ptuni 23623 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
26 | 19, 24, 25 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
27 | ptcmpg.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
28 | 26, 27 | eqtr4di 2798 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
29 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card)) | |
30 | 28, 29 | eqeltrd 2844 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ∈ (UFL ∩ dom card)) |
31 | 15, 18, 19, 20, 30 | ptcmplem5 24085 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
32 | 1, 31 | eqeltrid 2848 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 “ cima 5703 ⟶wf 6569 ‘cfv 6573 ∈ cmpo 7450 Xcixp 8955 cardccrd 10004 ∏tcpt 17498 Topctop 22920 Compccmp 23415 UFLcufl 23929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-fin 9007 df-fi 9480 df-wdom 9634 df-card 10008 df-acn 10011 df-topgen 17503 df-pt 17504 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-cmp 23416 df-fil 23875 df-ufil 23930 df-ufl 23931 df-flim 23968 df-fcls 23970 |
This theorem is referenced by: ptcmp 24087 dfac21 43023 |
Copyright terms: Public domain | W3C validator |