| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmpg | Structured version Visualization version GIF version | ||
| Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23951). (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmpg.1 | ⊢ 𝐽 = (∏t‘𝐹) |
| ptcmpg.2 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ptcmpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmpg.1 | . 2 ⊢ 𝐽 = (∏t‘𝐹) | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑎) | |
| 3 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑎(𝐹‘𝑘) | |
| 4 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
| 5 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑢(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
| 6 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑎(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
| 7 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑏(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
| 8 | fveq2 6860 | . . . 4 ⊢ (𝑎 = 𝑘 → (𝐹‘𝑎) = (𝐹‘𝑘)) | |
| 9 | fveq2 6860 | . . . . . . . 8 ⊢ (𝑎 = 𝑘 → (𝑤‘𝑎) = (𝑤‘𝑘)) | |
| 10 | 9 | mpteq2dv 5203 | . . . . . . 7 ⊢ (𝑎 = 𝑘 → (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
| 11 | 10 | cnveqd 5841 | . . . . . 6 ⊢ (𝑎 = 𝑘 → ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
| 12 | 11 | imaeq1d 6032 | . . . . 5 ⊢ (𝑎 = 𝑘 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏)) |
| 13 | imaeq2 6029 | . . . . 5 ⊢ (𝑏 = 𝑢 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) | |
| 14 | 12, 13 | sylan9eq 2785 | . . . 4 ⊢ ((𝑎 = 𝑘 ∧ 𝑏 = 𝑢) → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 15 | 2, 3, 4, 5, 6, 7, 8, 14 | cbvmpox 7484 | . . 3 ⊢ (𝑎 ∈ 𝐴, 𝑏 ∈ (𝐹‘𝑎) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 16 | fveq2 6860 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) | |
| 17 | 16 | unieqd 4886 | . . . 4 ⊢ (𝑛 = 𝑚 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑚)) |
| 18 | 17 | cbvixpv 8890 | . . 3 ⊢ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = X𝑚 ∈ 𝐴 ∪ (𝐹‘𝑚) |
| 19 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴 ∈ 𝑉) | |
| 20 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp) | |
| 21 | cmptop 23288 | . . . . . . . 8 ⊢ (𝑘 ∈ Comp → 𝑘 ∈ Top) | |
| 22 | 21 | ssriv 3952 | . . . . . . 7 ⊢ Comp ⊆ Top |
| 23 | fss 6706 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top) | |
| 24 | 20, 22, 23 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top) |
| 25 | 1 | ptuni 23487 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
| 26 | 19, 24, 25 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
| 27 | ptcmpg.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 28 | 26, 27 | eqtr4di 2783 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
| 29 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card)) | |
| 30 | 28, 29 | eqeltrd 2829 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ∈ (UFL ∩ dom card)) |
| 31 | 15, 18, 19, 20, 30 | ptcmplem5 23949 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
| 32 | 1, 31 | eqeltrid 2833 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3915 ⊆ wss 3916 ∪ cuni 4873 ↦ cmpt 5190 ◡ccnv 5639 dom cdm 5640 “ cima 5643 ⟶wf 6509 ‘cfv 6513 ∈ cmpo 7391 Xcixp 8872 cardccrd 9894 ∏tcpt 17407 Topctop 22786 Compccmp 23279 UFLcufl 23793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-omul 8441 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-fin 8924 df-fi 9368 df-wdom 9524 df-card 9898 df-acn 9901 df-topgen 17412 df-pt 17413 df-fbas 21267 df-fg 21268 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-cmp 23280 df-fil 23739 df-ufil 23794 df-ufl 23795 df-flim 23832 df-fcls 23834 |
| This theorem is referenced by: ptcmp 23951 dfac21 43048 |
| Copyright terms: Public domain | W3C validator |