Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptcmpg | Structured version Visualization version GIF version |
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23209). (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
ptcmpg.1 | ⊢ 𝐽 = (∏t‘𝐹) |
ptcmpg.2 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ptcmpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptcmpg.1 | . 2 ⊢ 𝐽 = (∏t‘𝐹) | |
2 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑎) | |
3 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑎(𝐹‘𝑘) | |
4 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑘(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
5 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑢(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
6 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑎(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
7 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑏(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
8 | fveq2 6774 | . . . 4 ⊢ (𝑎 = 𝑘 → (𝐹‘𝑎) = (𝐹‘𝑘)) | |
9 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑎 = 𝑘 → (𝑤‘𝑎) = (𝑤‘𝑘)) | |
10 | 9 | mpteq2dv 5176 | . . . . . . 7 ⊢ (𝑎 = 𝑘 → (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
11 | 10 | cnveqd 5784 | . . . . . 6 ⊢ (𝑎 = 𝑘 → ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
12 | 11 | imaeq1d 5968 | . . . . 5 ⊢ (𝑎 = 𝑘 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏)) |
13 | imaeq2 5965 | . . . . 5 ⊢ (𝑏 = 𝑢 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) | |
14 | 12, 13 | sylan9eq 2798 | . . . 4 ⊢ ((𝑎 = 𝑘 ∧ 𝑏 = 𝑢) → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
15 | 2, 3, 4, 5, 6, 7, 8, 14 | cbvmpox 7368 | . . 3 ⊢ (𝑎 ∈ 𝐴, 𝑏 ∈ (𝐹‘𝑎) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
16 | fveq2 6774 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) | |
17 | 16 | unieqd 4853 | . . . 4 ⊢ (𝑛 = 𝑚 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑚)) |
18 | 17 | cbvixpv 8703 | . . 3 ⊢ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = X𝑚 ∈ 𝐴 ∪ (𝐹‘𝑚) |
19 | simp1 1135 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴 ∈ 𝑉) | |
20 | simp2 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp) | |
21 | cmptop 22546 | . . . . . . . 8 ⊢ (𝑘 ∈ Comp → 𝑘 ∈ Top) | |
22 | 21 | ssriv 3925 | . . . . . . 7 ⊢ Comp ⊆ Top |
23 | fss 6617 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top) | |
24 | 20, 22, 23 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top) |
25 | 1 | ptuni 22745 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
26 | 19, 24, 25 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
27 | ptcmpg.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
28 | 26, 27 | eqtr4di 2796 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
29 | simp3 1137 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card)) | |
30 | 28, 29 | eqeltrd 2839 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ∈ (UFL ∩ dom card)) |
31 | 15, 18, 19, 20, 30 | ptcmplem5 23207 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
32 | 1, 31 | eqeltrid 2843 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ∪ cuni 4839 ↦ cmpt 5157 ◡ccnv 5588 dom cdm 5589 “ cima 5592 ⟶wf 6429 ‘cfv 6433 ∈ cmpo 7277 Xcixp 8685 cardccrd 9693 ∏tcpt 17149 Topctop 22042 Compccmp 22537 UFLcufl 23051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-fin 8737 df-fi 9170 df-wdom 9324 df-card 9697 df-acn 9700 df-topgen 17154 df-pt 17155 df-fbas 20594 df-fg 20595 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-cmp 22538 df-fil 22997 df-ufil 23052 df-ufl 23053 df-flim 23090 df-fcls 23092 |
This theorem is referenced by: ptcmp 23209 dfac21 40891 |
Copyright terms: Public domain | W3C validator |