MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpg Structured version   Visualization version   GIF version

Theorem ptcmpg 23944
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23945). (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ptcmpg.1 𝐽 = (∏t𝐹)
ptcmpg.2 𝑋 = 𝐽
Assertion
Ref Expression
ptcmpg ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)

Proof of Theorem ptcmpg
Dummy variables 𝑎 𝑏 𝑘 𝑚 𝑛 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmpg.1 . 2 𝐽 = (∏t𝐹)
2 nfcv 2891 . . . 4 𝑘(𝐹𝑎)
3 nfcv 2891 . . . 4 𝑎(𝐹𝑘)
4 nfcv 2891 . . . 4 𝑘((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
5 nfcv 2891 . . . 4 𝑢((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
6 nfcv 2891 . . . 4 𝑎((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
7 nfcv 2891 . . . 4 𝑏((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
8 fveq2 6858 . . . 4 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
9 fveq2 6858 . . . . . . . 8 (𝑎 = 𝑘 → (𝑤𝑎) = (𝑤𝑘))
109mpteq2dv 5201 . . . . . . 7 (𝑎 = 𝑘 → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1110cnveqd 5839 . . . . . 6 (𝑎 = 𝑘(𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1211imaeq1d 6030 . . . . 5 (𝑎 = 𝑘 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏))
13 imaeq2 6027 . . . . 5 (𝑏 = 𝑢 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
1412, 13sylan9eq 2784 . . . 4 ((𝑎 = 𝑘𝑏 = 𝑢) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
152, 3, 4, 5, 6, 7, 8, 14cbvmpox 7482 . . 3 (𝑎𝐴, 𝑏 ∈ (𝐹𝑎) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
16 fveq2 6858 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716unieqd 4884 . . . 4 (𝑛 = 𝑚 (𝐹𝑛) = (𝐹𝑚))
1817cbvixpv 8888 . . 3 X𝑛𝐴 (𝐹𝑛) = X𝑚𝐴 (𝐹𝑚)
19 simp1 1136 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴𝑉)
20 simp2 1137 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp)
21 cmptop 23282 . . . . . . . 8 (𝑘 ∈ Comp → 𝑘 ∈ Top)
2221ssriv 3950 . . . . . . 7 Comp ⊆ Top
23 fss 6704 . . . . . . 7 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
2420, 22, 23sylancl 586 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top)
251ptuni 23481 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
2619, 24, 25syl2anc 584 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
27 ptcmpg.2 . . . . 5 𝑋 = 𝐽
2826, 27eqtr4di 2782 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
29 simp3 1138 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card))
3028, 29eqeltrd 2828 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) ∈ (UFL ∩ dom card))
3115, 18, 19, 20, 30ptcmplem5 23943 . 2 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t𝐹) ∈ Comp)
321, 31eqeltrid 2832 1 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3913  wss 3914   cuni 4871  cmpt 5188  ccnv 5637  dom cdm 5638  cima 5641  wf 6507  cfv 6511  cmpo 7389  Xcixp 8870  cardccrd 9888  tcpt 17401  Topctop 22780  Compccmp 23273  UFLcufl 23787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-wdom 9518  df-card 9892  df-acn 9895  df-topgen 17406  df-pt 17407  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cmp 23274  df-fil 23733  df-ufil 23788  df-ufl 23789  df-flim 23826  df-fcls 23828
This theorem is referenced by:  ptcmp  23945  dfac21  43055
  Copyright terms: Public domain W3C validator