MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpg Structured version   Visualization version   GIF version

Theorem ptcmpg 23116
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23117). (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ptcmpg.1 𝐽 = (∏t𝐹)
ptcmpg.2 𝑋 = 𝐽
Assertion
Ref Expression
ptcmpg ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)

Proof of Theorem ptcmpg
Dummy variables 𝑎 𝑏 𝑘 𝑚 𝑛 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmpg.1 . 2 𝐽 = (∏t𝐹)
2 nfcv 2906 . . . 4 𝑘(𝐹𝑎)
3 nfcv 2906 . . . 4 𝑎(𝐹𝑘)
4 nfcv 2906 . . . 4 𝑘((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
5 nfcv 2906 . . . 4 𝑢((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
6 nfcv 2906 . . . 4 𝑎((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
7 nfcv 2906 . . . 4 𝑏((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
8 fveq2 6756 . . . 4 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
9 fveq2 6756 . . . . . . . 8 (𝑎 = 𝑘 → (𝑤𝑎) = (𝑤𝑘))
109mpteq2dv 5172 . . . . . . 7 (𝑎 = 𝑘 → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1110cnveqd 5773 . . . . . 6 (𝑎 = 𝑘(𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1211imaeq1d 5957 . . . . 5 (𝑎 = 𝑘 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏))
13 imaeq2 5954 . . . . 5 (𝑏 = 𝑢 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
1412, 13sylan9eq 2799 . . . 4 ((𝑎 = 𝑘𝑏 = 𝑢) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
152, 3, 4, 5, 6, 7, 8, 14cbvmpox 7346 . . 3 (𝑎𝐴, 𝑏 ∈ (𝐹𝑎) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
16 fveq2 6756 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716unieqd 4850 . . . 4 (𝑛 = 𝑚 (𝐹𝑛) = (𝐹𝑚))
1817cbvixpv 8661 . . 3 X𝑛𝐴 (𝐹𝑛) = X𝑚𝐴 (𝐹𝑚)
19 simp1 1134 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴𝑉)
20 simp2 1135 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp)
21 cmptop 22454 . . . . . . . 8 (𝑘 ∈ Comp → 𝑘 ∈ Top)
2221ssriv 3921 . . . . . . 7 Comp ⊆ Top
23 fss 6601 . . . . . . 7 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
2420, 22, 23sylancl 585 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top)
251ptuni 22653 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
2619, 24, 25syl2anc 583 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
27 ptcmpg.2 . . . . 5 𝑋 = 𝐽
2826, 27eqtr4di 2797 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
29 simp3 1136 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card))
3028, 29eqeltrd 2839 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) ∈ (UFL ∩ dom card))
3115, 18, 19, 20, 30ptcmplem5 23115 . 2 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t𝐹) ∈ Comp)
321, 31eqeltrid 2843 1 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883   cuni 4836  cmpt 5153  ccnv 5579  dom cdm 5580  cima 5583  wf 6414  cfv 6418  cmpo 7257  Xcixp 8643  cardccrd 9624  tcpt 17066  Topctop 21950  Compccmp 22445  UFLcufl 22959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-wdom 9254  df-card 9628  df-acn 9631  df-topgen 17071  df-pt 17072  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cmp 22446  df-fil 22905  df-ufil 22960  df-ufl 22961  df-flim 22998  df-fcls 23000
This theorem is referenced by:  ptcmp  23117  dfac21  40807
  Copyright terms: Public domain W3C validator