MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpg Structured version   Visualization version   GIF version

Theorem ptcmpg 23950
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23951). (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ptcmpg.1 𝐽 = (∏t𝐹)
ptcmpg.2 𝑋 = 𝐽
Assertion
Ref Expression
ptcmpg ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)

Proof of Theorem ptcmpg
Dummy variables 𝑎 𝑏 𝑘 𝑚 𝑛 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmpg.1 . 2 𝐽 = (∏t𝐹)
2 nfcv 2892 . . . 4 𝑘(𝐹𝑎)
3 nfcv 2892 . . . 4 𝑎(𝐹𝑘)
4 nfcv 2892 . . . 4 𝑘((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
5 nfcv 2892 . . . 4 𝑢((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
6 nfcv 2892 . . . 4 𝑎((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
7 nfcv 2892 . . . 4 𝑏((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
8 fveq2 6860 . . . 4 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
9 fveq2 6860 . . . . . . . 8 (𝑎 = 𝑘 → (𝑤𝑎) = (𝑤𝑘))
109mpteq2dv 5203 . . . . . . 7 (𝑎 = 𝑘 → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1110cnveqd 5841 . . . . . 6 (𝑎 = 𝑘(𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1211imaeq1d 6032 . . . . 5 (𝑎 = 𝑘 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏))
13 imaeq2 6029 . . . . 5 (𝑏 = 𝑢 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
1412, 13sylan9eq 2785 . . . 4 ((𝑎 = 𝑘𝑏 = 𝑢) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
152, 3, 4, 5, 6, 7, 8, 14cbvmpox 7484 . . 3 (𝑎𝐴, 𝑏 ∈ (𝐹𝑎) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
16 fveq2 6860 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716unieqd 4886 . . . 4 (𝑛 = 𝑚 (𝐹𝑛) = (𝐹𝑚))
1817cbvixpv 8890 . . 3 X𝑛𝐴 (𝐹𝑛) = X𝑚𝐴 (𝐹𝑚)
19 simp1 1136 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴𝑉)
20 simp2 1137 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp)
21 cmptop 23288 . . . . . . . 8 (𝑘 ∈ Comp → 𝑘 ∈ Top)
2221ssriv 3952 . . . . . . 7 Comp ⊆ Top
23 fss 6706 . . . . . . 7 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
2420, 22, 23sylancl 586 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top)
251ptuni 23487 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
2619, 24, 25syl2anc 584 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
27 ptcmpg.2 . . . . 5 𝑋 = 𝐽
2826, 27eqtr4di 2783 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
29 simp3 1138 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card))
3028, 29eqeltrd 2829 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) ∈ (UFL ∩ dom card))
3115, 18, 19, 20, 30ptcmplem5 23949 . 2 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t𝐹) ∈ Comp)
321, 31eqeltrid 2833 1 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cin 3915  wss 3916   cuni 4873  cmpt 5190  ccnv 5639  dom cdm 5640  cima 5643  wf 6509  cfv 6513  cmpo 7391  Xcixp 8872  cardccrd 9894  tcpt 17407  Topctop 22786  Compccmp 23279  UFLcufl 23793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-omul 8441  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-fin 8924  df-fi 9368  df-wdom 9524  df-card 9898  df-acn 9901  df-topgen 17412  df-pt 17413  df-fbas 21267  df-fg 21268  df-top 22787  df-topon 22804  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-cmp 23280  df-fil 23739  df-ufil 23794  df-ufl 23795  df-flim 23832  df-fcls 23834
This theorem is referenced by:  ptcmp  23951  dfac21  43048
  Copyright terms: Public domain W3C validator