Step | Hyp | Ref
| Expression |
1 | | ptcmpg.1 |
. 2
β’ π½ =
(βtβπΉ) |
2 | | nfcv 2904 |
. . . 4
β’
β²π(πΉβπ) |
3 | | nfcv 2904 |
. . . 4
β’
β²π(πΉβπ) |
4 | | nfcv 2904 |
. . . 4
β’
β²π(β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π) |
5 | | nfcv 2904 |
. . . 4
β’
β²π’(β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π) |
6 | | nfcv 2904 |
. . . 4
β’
β²π(β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π’) |
7 | | nfcv 2904 |
. . . 4
β’
β²π(β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π’) |
8 | | fveq2 6892 |
. . . 4
β’ (π = π β (πΉβπ) = (πΉβπ)) |
9 | | fveq2 6892 |
. . . . . . . 8
β’ (π = π β (π€βπ) = (π€βπ)) |
10 | 9 | mpteq2dv 5251 |
. . . . . . 7
β’ (π = π β (π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) = (π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ))) |
11 | 10 | cnveqd 5876 |
. . . . . 6
β’ (π = π β β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) = β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ))) |
12 | 11 | imaeq1d 6059 |
. . . . 5
β’ (π = π β (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π) = (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π)) |
13 | | imaeq2 6056 |
. . . . 5
β’ (π = π’ β (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π) = (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π’)) |
14 | 12, 13 | sylan9eq 2793 |
. . . 4
β’ ((π = π β§ π = π’) β (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π) = (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π’)) |
15 | 2, 3, 4, 5, 6, 7, 8, 14 | cbvmpox 7502 |
. . 3
β’ (π β π΄, π β (πΉβπ) β¦ (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π)) = (π β π΄, π’ β (πΉβπ) β¦ (β‘(π€ β Xπ β π΄ βͺ (πΉβπ) β¦ (π€βπ)) β π’)) |
16 | | fveq2 6892 |
. . . . 5
β’ (π = π β (πΉβπ) = (πΉβπ)) |
17 | 16 | unieqd 4923 |
. . . 4
β’ (π = π β βͺ (πΉβπ) = βͺ (πΉβπ)) |
18 | 17 | cbvixpv 8909 |
. . 3
β’ Xπ β
π΄ βͺ (πΉβπ) = Xπ β π΄ βͺ (πΉβπ) |
19 | | simp1 1137 |
. . 3
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β π΄ β π) |
20 | | simp2 1138 |
. . 3
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β πΉ:π΄βΆComp) |
21 | | cmptop 22899 |
. . . . . . . 8
β’ (π β Comp β π β Top) |
22 | 21 | ssriv 3987 |
. . . . . . 7
β’ Comp
β Top |
23 | | fss 6735 |
. . . . . . 7
β’ ((πΉ:π΄βΆComp β§ Comp β Top) β
πΉ:π΄βΆTop) |
24 | 20, 22, 23 | sylancl 587 |
. . . . . 6
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β πΉ:π΄βΆTop) |
25 | 1 | ptuni 23098 |
. . . . . 6
β’ ((π΄ β π β§ πΉ:π΄βΆTop) β Xπ β
π΄ βͺ (πΉβπ) = βͺ π½) |
26 | 19, 24, 25 | syl2anc 585 |
. . . . 5
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β Xπ β
π΄ βͺ (πΉβπ) = βͺ π½) |
27 | | ptcmpg.2 |
. . . . 5
β’ π = βͺ
π½ |
28 | 26, 27 | eqtr4di 2791 |
. . . 4
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β Xπ β
π΄ βͺ (πΉβπ) = π) |
29 | | simp3 1139 |
. . . 4
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β π β (UFL β© dom
card)) |
30 | 28, 29 | eqeltrd 2834 |
. . 3
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β Xπ β
π΄ βͺ (πΉβπ) β (UFL β© dom
card)) |
31 | 15, 18, 19, 20, 30 | ptcmplem5 23560 |
. 2
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β
(βtβπΉ) β Comp) |
32 | 1, 31 | eqeltrid 2838 |
1
β’ ((π΄ β π β§ πΉ:π΄βΆComp β§ π β (UFL β© dom card)) β π½ β Comp) |