| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcmpg | Structured version Visualization version GIF version | ||
| Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 23968). (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptcmpg.1 | ⊢ 𝐽 = (∏t‘𝐹) |
| ptcmpg.2 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ptcmpg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcmpg.1 | . 2 ⊢ 𝐽 = (∏t‘𝐹) | |
| 2 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑘(𝐹‘𝑎) | |
| 3 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑎(𝐹‘𝑘) | |
| 4 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑘(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
| 5 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑢(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) | |
| 6 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑎(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
| 7 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑏(◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢) | |
| 8 | fveq2 6817 | . . . 4 ⊢ (𝑎 = 𝑘 → (𝐹‘𝑎) = (𝐹‘𝑘)) | |
| 9 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑎 = 𝑘 → (𝑤‘𝑎) = (𝑤‘𝑘)) | |
| 10 | 9 | mpteq2dv 5180 | . . . . . . 7 ⊢ (𝑎 = 𝑘 → (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = (𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
| 11 | 10 | cnveqd 5810 | . . . . . 6 ⊢ (𝑎 = 𝑘 → ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) = ◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘))) |
| 12 | 11 | imaeq1d 6003 | . . . . 5 ⊢ (𝑎 = 𝑘 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏)) |
| 13 | imaeq2 6000 | . . . . 5 ⊢ (𝑏 = 𝑢 → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) | |
| 14 | 12, 13 | sylan9eq 2786 | . . . 4 ⊢ ((𝑎 = 𝑘 ∧ 𝑏 = 𝑢) → (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏) = (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 15 | 2, 3, 4, 5, 6, 7, 8, 14 | cbvmpox 7434 | . . 3 ⊢ (𝑎 ∈ 𝐴, 𝑏 ∈ (𝐹‘𝑎) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑎)) “ 𝑏)) = (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ↦ (𝑤‘𝑘)) “ 𝑢)) |
| 16 | fveq2 6817 | . . . . 5 ⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) | |
| 17 | 16 | unieqd 4867 | . . . 4 ⊢ (𝑛 = 𝑚 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑚)) |
| 18 | 17 | cbvixpv 8834 | . . 3 ⊢ X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = X𝑚 ∈ 𝐴 ∪ (𝐹‘𝑚) |
| 19 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴 ∈ 𝑉) | |
| 20 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp) | |
| 21 | cmptop 23305 | . . . . . . . 8 ⊢ (𝑘 ∈ Comp → 𝑘 ∈ Top) | |
| 22 | 21 | ssriv 3933 | . . . . . . 7 ⊢ Comp ⊆ Top |
| 23 | fss 6662 | . . . . . . 7 ⊢ ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top) | |
| 24 | 20, 22, 23 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top) |
| 25 | 1 | ptuni 23504 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
| 26 | 19, 24, 25 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = ∪ 𝐽) |
| 27 | ptcmpg.2 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 28 | 26, 27 | eqtr4di 2784 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) = 𝑋) |
| 29 | simp3 1138 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card)) | |
| 30 | 28, 29 | eqeltrd 2831 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ∈ (UFL ∩ dom card)) |
| 31 | 15, 18, 19, 20, 30 | ptcmplem5 23966 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t‘𝐹) ∈ Comp) |
| 32 | 1, 31 | eqeltrid 2835 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ∪ cuni 4854 ↦ cmpt 5167 ◡ccnv 5610 dom cdm 5611 “ cima 5614 ⟶wf 6472 ‘cfv 6476 ∈ cmpo 7343 Xcixp 8816 cardccrd 9823 ∏tcpt 17337 Topctop 22803 Compccmp 23296 UFLcufl 23810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-fin 8868 df-fi 9290 df-wdom 9446 df-card 9827 df-acn 9830 df-topgen 17342 df-pt 17343 df-fbas 21283 df-fg 21284 df-top 22804 df-topon 22821 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-cmp 23297 df-fil 23756 df-ufil 23811 df-ufl 23812 df-flim 23849 df-fcls 23851 |
| This theorem is referenced by: ptcmp 23968 dfac21 43099 |
| Copyright terms: Public domain | W3C validator |