MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcmpg Structured version   Visualization version   GIF version

Theorem ptcmpg 24011
Description: Tychonoff's theorem: The product of compact spaces is compact. The choice principles needed are encoded in the last hypothesis: the base set of the product must be well-orderable and satisfy the ultrafilter lemma. Both these assumptions are satisfied if 𝒫 𝒫 𝑋 is well-orderable, so if we assume the Axiom of Choice we can eliminate them (see ptcmp 24012). (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
ptcmpg.1 𝐽 = (∏t𝐹)
ptcmpg.2 𝑋 = 𝐽
Assertion
Ref Expression
ptcmpg ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)

Proof of Theorem ptcmpg
Dummy variables 𝑎 𝑏 𝑘 𝑚 𝑛 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcmpg.1 . 2 𝐽 = (∏t𝐹)
2 nfcv 2897 . . . 4 𝑘(𝐹𝑎)
3 nfcv 2897 . . . 4 𝑎(𝐹𝑘)
4 nfcv 2897 . . . 4 𝑘((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
5 nfcv 2897 . . . 4 𝑢((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)
6 nfcv 2897 . . . 4 𝑎((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
7 nfcv 2897 . . . 4 𝑏((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢)
8 fveq2 6886 . . . 4 (𝑎 = 𝑘 → (𝐹𝑎) = (𝐹𝑘))
9 fveq2 6886 . . . . . . . 8 (𝑎 = 𝑘 → (𝑤𝑎) = (𝑤𝑘))
109mpteq2dv 5224 . . . . . . 7 (𝑎 = 𝑘 → (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1110cnveqd 5866 . . . . . 6 (𝑎 = 𝑘(𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) = (𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)))
1211imaeq1d 6057 . . . . 5 (𝑎 = 𝑘 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏))
13 imaeq2 6054 . . . . 5 (𝑏 = 𝑢 → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
1412, 13sylan9eq 2789 . . . 4 ((𝑎 = 𝑘𝑏 = 𝑢) → ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏) = ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
152, 3, 4, 5, 6, 7, 8, 14cbvmpox 7508 . . 3 (𝑎𝐴, 𝑏 ∈ (𝐹𝑎) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑎)) “ 𝑏)) = (𝑘𝐴, 𝑢 ∈ (𝐹𝑘) ↦ ((𝑤X𝑛𝐴 (𝐹𝑛) ↦ (𝑤𝑘)) “ 𝑢))
16 fveq2 6886 . . . . 5 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1716unieqd 4900 . . . 4 (𝑛 = 𝑚 (𝐹𝑛) = (𝐹𝑚))
1817cbvixpv 8937 . . 3 X𝑛𝐴 (𝐹𝑛) = X𝑚𝐴 (𝐹𝑚)
19 simp1 1136 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐴𝑉)
20 simp2 1137 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Comp)
21 cmptop 23349 . . . . . . . 8 (𝑘 ∈ Comp → 𝑘 ∈ Top)
2221ssriv 3967 . . . . . . 7 Comp ⊆ Top
23 fss 6732 . . . . . . 7 ((𝐹:𝐴⟶Comp ∧ Comp ⊆ Top) → 𝐹:𝐴⟶Top)
2420, 22, 23sylancl 586 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐹:𝐴⟶Top)
251ptuni 23548 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
2619, 24, 25syl2anc 584 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝐽)
27 ptcmpg.2 . . . . 5 𝑋 = 𝐽
2826, 27eqtr4di 2787 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) = 𝑋)
29 simp3 1138 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝑋 ∈ (UFL ∩ dom card))
3028, 29eqeltrd 2833 . . 3 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → X𝑛𝐴 (𝐹𝑛) ∈ (UFL ∩ dom card))
3115, 18, 19, 20, 30ptcmplem5 24010 . 2 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → (∏t𝐹) ∈ Comp)
321, 31eqeltrid 2837 1 ((𝐴𝑉𝐹:𝐴⟶Comp ∧ 𝑋 ∈ (UFL ∩ dom card)) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cin 3930  wss 3931   cuni 4887  cmpt 5205  ccnv 5664  dom cdm 5665  cima 5668  wf 6537  cfv 6541  cmpo 7415  Xcixp 8919  cardccrd 9957  tcpt 17454  Topctop 22847  Compccmp 23340  UFLcufl 23854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-ixp 8920  df-en 8968  df-dom 8969  df-fin 8971  df-fi 9433  df-wdom 9587  df-card 9961  df-acn 9964  df-topgen 17459  df-pt 17460  df-fbas 21323  df-fg 21324  df-top 22848  df-topon 22865  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-cmp 23341  df-fil 23800  df-ufil 23855  df-ufl 23856  df-flim 23893  df-fcls 23895
This theorem is referenced by:  ptcmp  24012  dfac21  43041
  Copyright terms: Public domain W3C validator