MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomptsx Structured version   Visualization version   GIF version

Theorem mpomptsx 7834
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
mpomptsx (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem mpomptsx
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3412 . . . . . 6 𝑢 ∈ V
2 vex 3412 . . . . . 6 𝑣 ∈ V
31, 2op1std 7771 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) = 𝑢)
43csbeq1d 3815 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶)
51, 2op2ndd 7772 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) = 𝑣)
65csbeq1d 3815 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
76csbeq2dv 3818 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
84, 7eqtrd 2777 . . 3 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
98mpomptx 7323 . 2 (𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
10 nfcv 2904 . . . 4 𝑢({𝑥} × 𝐵)
11 nfcv 2904 . . . . 5 𝑥{𝑢}
12 nfcsb1v 3836 . . . . 5 𝑥𝑢 / 𝑥𝐵
1311, 12nfxp 5584 . . . 4 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
14 sneq 4551 . . . . 5 (𝑥 = 𝑢 → {𝑥} = {𝑢})
15 csbeq1a 3825 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
1614, 15xpeq12d 5582 . . . 4 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
1710, 13, 16cbviun 4945 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
1817mpteq1i 5145 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶) = (𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
19 nfcv 2904 . . 3 𝑢𝐵
20 nfcv 2904 . . 3 𝑢𝐶
21 nfcv 2904 . . 3 𝑣𝐶
22 nfcsb1v 3836 . . 3 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
23 nfcv 2904 . . . 4 𝑦𝑢
24 nfcsb1v 3836 . . . 4 𝑦𝑣 / 𝑦𝐶
2523, 24nfcsbw 3838 . . 3 𝑦𝑢 / 𝑥𝑣 / 𝑦𝐶
26 csbeq1a 3825 . . . 4 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
27 csbeq1a 3825 . . . 4 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2826, 27sylan9eqr 2800 . . 3 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2919, 12, 20, 21, 22, 25, 15, 28cbvmpox 7304 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
309, 18, 293eqtr4ri 2776 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  csb 3811  {csn 4541  cop 4547   ciun 4904  cmpt 5135   × cxp 5549  cfv 6380  cmpo 7215  1st c1st 7759  2nd c2nd 7760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fv 6388  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762
This theorem is referenced by:  mpompts  7835  ovmptss  7861
  Copyright terms: Public domain W3C validator