MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpomptsx Structured version   Visualization version   GIF version

Theorem mpomptsx 8088
Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
mpomptsx (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem mpomptsx
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . . 6 𝑢 ∈ V
2 vex 3482 . . . . . 6 𝑣 ∈ V
31, 2op1std 8023 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) = 𝑢)
43csbeq1d 3912 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶)
51, 2op2ndd 8024 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) = 𝑣)
65csbeq1d 3912 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
76csbeq2dv 3915 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
84, 7eqtrd 2775 . . 3 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
98mpomptx 7546 . 2 (𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
10 nfcv 2903 . . . 4 𝑢({𝑥} × 𝐵)
11 nfcv 2903 . . . . 5 𝑥{𝑢}
12 nfcsb1v 3933 . . . . 5 𝑥𝑢 / 𝑥𝐵
1311, 12nfxp 5722 . . . 4 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
14 sneq 4641 . . . . 5 (𝑥 = 𝑢 → {𝑥} = {𝑢})
15 csbeq1a 3922 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
1614, 15xpeq12d 5720 . . . 4 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
1710, 13, 16cbviun 5041 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
1817mpteq1i 5244 . 2 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶) = (𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
19 nfcv 2903 . . 3 𝑢𝐵
20 nfcv 2903 . . 3 𝑢𝐶
21 nfcv 2903 . . 3 𝑣𝐶
22 nfcsb1v 3933 . . 3 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
23 nfcv 2903 . . . 4 𝑦𝑢
24 nfcsb1v 3933 . . . 4 𝑦𝑣 / 𝑦𝐶
2523, 24nfcsbw 3935 . . 3 𝑦𝑢 / 𝑥𝑣 / 𝑦𝐶
26 csbeq1a 3922 . . . 4 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
27 csbeq1a 3922 . . . 4 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2826, 27sylan9eqr 2797 . . 3 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2919, 12, 20, 21, 22, 25, 15, 28cbvmpox 7526 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
309, 18, 293eqtr4ri 2774 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  csb 3908  {csn 4631  cop 4637   ciun 4996  cmpt 5231   × cxp 5687  cfv 6563  cmpo 7433  1st c1st 8011  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by:  mpompts  8089  ovmptss  8117
  Copyright terms: Public domain W3C validator