Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmpo | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
Ref | Expression |
---|---|
cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑧𝐵 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
7 | eqidd 2737 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 7422 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnfc 2884 ∈ cmpo 7331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-opab 5152 df-oprab 7333 df-mpo 7334 |
This theorem is referenced by: cbvmpov 7424 fvmpopr2d 7488 el2mpocsbcl 7985 fnmpoovd 7987 fmpoco 7995 mpocurryd 8147 fvmpocurryd 8149 xpf1o 8996 cnfcomlem 9548 fseqenlem1 9873 relexpsucnnr 14827 gsumdixp 19935 evlslem4 21382 madugsum 21890 cnmpt2t 22922 cnmptk2 22935 fmucnd 23542 fsum2cn 24132 fmuldfeqlem1 43448 smflim 44641 |
Copyright terms: Public domain | W3C validator |