![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvmpo | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
Ref | Expression |
---|---|
cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑧𝐵 | |
2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
7 | eqidd 2726 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 7513 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnfc 2875 ∈ cmpo 7421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-opab 5212 df-oprab 7423 df-mpo 7424 |
This theorem is referenced by: cbvmpov 7515 fvmpopr2d 7583 el2mpocsbcl 8090 fnmpoovd 8092 fmpoco 8100 mpocurryd 8275 fvmpocurryd 8277 xpf1o 9167 cnfcomlem 9729 fseqenlem1 10054 relexpsucnnr 15016 gsumdixp 20284 evlslem4 22059 madugsum 22606 cnmpt2t 23638 cnmptk2 23651 fmucnd 24258 fsum2cn 24850 aks6d1c7lem3 41804 fmpocos 41877 fmuldfeqlem1 45113 smflim 46308 |
Copyright terms: Public domain | W3C validator |