| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpo | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
| Ref | Expression |
|---|---|
| cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
| cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
| cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
| cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
| cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑧𝐵 | |
| 2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
| 5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
| 7 | eqidd 2737 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
| 8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 7505 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnfc 2884 ∈ cmpo 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: fvmpopr2d 7574 el2mpocsbcl 8089 fnmpoovd 8091 fmpoco 8099 mpocurryd 8273 fvmpocurryd 8275 xpf1o 9158 cnfcomlem 9718 fseqenlem1 10043 relexpsucnnr 15049 gsumdixp 20284 evlslem4 22039 madugsum 22586 cnmpt2t 23616 cnmptk2 23629 fmucnd 24235 fsum2cn 24818 aks6d1c7lem3 42200 fmpocos 42252 fmuldfeqlem1 45578 smflim 46773 |
| Copyright terms: Public domain | W3C validator |