MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpo Structured version   Visualization version   GIF version

Theorem cbvmpo 7463
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpo.1 𝑧𝐶
cbvmpo.2 𝑤𝐶
cbvmpo.3 𝑥𝐷
cbvmpo.4 𝑦𝐷
cbvmpo.5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvmpo (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpo
StepHypRef Expression
1 nfcv 2891 . 2 𝑧𝐵
2 nfcv 2891 . 2 𝑥𝐵
3 cbvmpo.1 . 2 𝑧𝐶
4 cbvmpo.2 . 2 𝑤𝐶
5 cbvmpo.3 . 2 𝑥𝐷
6 cbvmpo.4 . 2 𝑦𝐷
7 eqidd 2730 . 2 (𝑥 = 𝑧𝐵 = 𝐵)
8 cbvmpo.5 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
91, 2, 3, 4, 5, 6, 7, 8cbvmpox 7462 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnfc 2876  cmpo 7371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  fvmpopr2d  7531  el2mpocsbcl  8041  fnmpoovd  8043  fmpoco  8051  mpocurryd  8225  fvmpocurryd  8227  xpf1o  9080  cnfcomlem  9628  fseqenlem1  9953  relexpsucnnr  14967  gsumdixp  20204  evlslem4  21959  madugsum  22506  cnmpt2t  23536  cnmptk2  23549  fmucnd  24155  fsum2cn  24738  aks6d1c7lem3  42143  fmpocos  42195  fmuldfeqlem1  45553  smflim  46748
  Copyright terms: Public domain W3C validator