| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpo | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
| Ref | Expression |
|---|---|
| cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
| cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
| cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
| cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
| cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑧𝐵 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
| 5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
| 7 | eqidd 2730 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
| 8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 7462 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnfc 2876 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: fvmpopr2d 7531 el2mpocsbcl 8041 fnmpoovd 8043 fmpoco 8051 mpocurryd 8225 fvmpocurryd 8227 xpf1o 9080 cnfcomlem 9628 fseqenlem1 9953 relexpsucnnr 14967 gsumdixp 20204 evlslem4 21959 madugsum 22506 cnmpt2t 23536 cnmptk2 23549 fmucnd 24155 fsum2cn 24738 aks6d1c7lem3 42143 fmpocos 42195 fmuldfeqlem1 45553 smflim 46748 |
| Copyright terms: Public domain | W3C validator |