MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpo Structured version   Visualization version   GIF version

Theorem cbvmpo 7443
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpo.1 𝑧𝐶
cbvmpo.2 𝑤𝐶
cbvmpo.3 𝑥𝐷
cbvmpo.4 𝑦𝐷
cbvmpo.5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvmpo (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpo
StepHypRef Expression
1 nfcv 2891 . 2 𝑧𝐵
2 nfcv 2891 . 2 𝑥𝐵
3 cbvmpo.1 . 2 𝑧𝐶
4 cbvmpo.2 . 2 𝑤𝐶
5 cbvmpo.3 . 2 𝑥𝐷
6 cbvmpo.4 . 2 𝑦𝐷
7 eqidd 2730 . 2 (𝑥 = 𝑧𝐵 = 𝐵)
8 cbvmpo.5 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
91, 2, 3, 4, 5, 6, 7, 8cbvmpox 7442 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnfc 2876  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  fvmpopr2d  7511  el2mpocsbcl  8018  fnmpoovd  8020  fmpoco  8028  mpocurryd  8202  fvmpocurryd  8204  xpf1o  9056  cnfcomlem  9595  fseqenlem1  9918  relexpsucnnr  14932  gsumdixp  20204  evlslem4  21981  madugsum  22528  cnmpt2t  23558  cnmptk2  23571  fmucnd  24177  fsum2cn  24760  aks6d1c7lem3  42155  fmpocos  42207  fmuldfeqlem1  45563  smflim  46758
  Copyright terms: Public domain W3C validator