MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvmpo Structured version   Visualization version   GIF version

Theorem cbvmpo 7423
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
Hypotheses
Ref Expression
cbvmpo.1 𝑧𝐶
cbvmpo.2 𝑤𝐶
cbvmpo.3 𝑥𝐷
cbvmpo.4 𝑦𝐷
cbvmpo.5 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
Assertion
Ref Expression
cbvmpo (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpo
StepHypRef Expression
1 nfcv 2904 . 2 𝑧𝐵
2 nfcv 2904 . 2 𝑥𝐵
3 cbvmpo.1 . 2 𝑧𝐶
4 cbvmpo.2 . 2 𝑤𝐶
5 cbvmpo.3 . 2 𝑥𝐷
6 cbvmpo.4 . 2 𝑦𝐷
7 eqidd 2737 . 2 (𝑥 = 𝑧𝐵 = 𝐵)
8 cbvmpo.5 . 2 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)
91, 2, 3, 4, 5, 6, 7, 8cbvmpox 7422 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wnfc 2884  cmpo 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-opab 5152  df-oprab 7333  df-mpo 7334
This theorem is referenced by:  cbvmpov  7424  fvmpopr2d  7488  el2mpocsbcl  7985  fnmpoovd  7987  fmpoco  7995  mpocurryd  8147  fvmpocurryd  8149  xpf1o  8996  cnfcomlem  9548  fseqenlem1  9873  relexpsucnnr  14827  gsumdixp  19935  evlslem4  21382  madugsum  21890  cnmpt2t  22922  cnmptk2  22935  fmucnd  23542  fsum2cn  24132  fmuldfeqlem1  43448  smflim  44641
  Copyright terms: Public domain W3C validator