Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmpo | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
Ref | Expression |
---|---|
cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑧𝐵 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
7 | eqidd 2739 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 7346 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnfc 2886 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: cbvmpov 7348 fvmpopr2d 7412 el2mpocsbcl 7896 fnmpoovd 7898 fmpoco 7906 mpocurryd 8056 fvmpocurryd 8058 xpf1o 8875 cnfcomlem 9387 fseqenlem1 9711 relexpsucnnr 14664 gsumdixp 19763 evlslem4 21194 madugsum 21700 cnmpt2t 22732 cnmptk2 22745 fmucnd 23352 fsum2cn 23940 fmuldfeqlem1 43013 smflim 44199 |
Copyright terms: Public domain | W3C validator |