| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvmpo | Structured version Visualization version GIF version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.) |
| Ref | Expression |
|---|---|
| cbvmpo.1 | ⊢ Ⅎ𝑧𝐶 |
| cbvmpo.2 | ⊢ Ⅎ𝑤𝐶 |
| cbvmpo.3 | ⊢ Ⅎ𝑥𝐷 |
| cbvmpo.4 | ⊢ Ⅎ𝑦𝐷 |
| cbvmpo.5 | ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑧𝐵 | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | cbvmpo.1 | . 2 ⊢ Ⅎ𝑧𝐶 | |
| 4 | cbvmpo.2 | . 2 ⊢ Ⅎ𝑤𝐶 | |
| 5 | cbvmpo.3 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 6 | cbvmpo.4 | . 2 ⊢ Ⅎ𝑦𝐷 | |
| 7 | eqidd 2730 | . 2 ⊢ (𝑥 = 𝑧 → 𝐵 = 𝐵) | |
| 8 | cbvmpo.5 | . 2 ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝐶 = 𝐷) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | cbvmpox 7442 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnfc 2876 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-opab 5155 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: fvmpopr2d 7511 el2mpocsbcl 8018 fnmpoovd 8020 fmpoco 8028 mpocurryd 8202 fvmpocurryd 8204 xpf1o 9056 cnfcomlem 9595 fseqenlem1 9918 relexpsucnnr 14932 gsumdixp 20204 evlslem4 21981 madugsum 22528 cnmpt2t 23558 cnmptk2 23571 fmucnd 24177 fsum2cn 24760 aks6d1c7lem3 42155 fmpocos 42207 fmuldfeqlem1 45563 smflim 46758 |
| Copyright terms: Public domain | W3C validator |