Step | Hyp | Ref
| Expression |
1 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑢𝐵 |
2 | | nfcsb1v 3857 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌𝐵 |
3 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑢𝐶 |
4 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑣𝐶 |
5 | | nfcsb1v 3857 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶 |
6 | | nfcv 2907 |
. . . . . 6
⊢
Ⅎ𝑦𝑢 |
7 | | nfcsb1v 3857 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝐶 |
8 | 6, 7 | nfcsbw 3859 |
. . . . 5
⊢
Ⅎ𝑦⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶 |
9 | | csbeq1a 3846 |
. . . . 5
⊢ (𝑥 = 𝑢 → 𝐵 = ⦋𝑢 / 𝑥⦌𝐵) |
10 | | csbeq1a 3846 |
. . . . . 6
⊢ (𝑦 = 𝑣 → 𝐶 = ⦋𝑣 / 𝑦⦌𝐶) |
11 | | csbeq1a 3846 |
. . . . . 6
⊢ (𝑥 = 𝑢 → ⦋𝑣 / 𝑦⦌𝐶 = ⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶) |
12 | 10, 11 | sylan9eqr 2800 |
. . . . 5
⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → 𝐶 = ⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶) |
13 | 1, 2, 3, 4, 5, 8, 9, 12 | cbvmpox 7368 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑢 ∈ 𝐴, 𝑣 ∈ ⦋𝑢 / 𝑥⦌𝐵 ↦ ⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶) |
14 | | fmpox.1 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
15 | | vex 3436 |
. . . . . . . 8
⊢ 𝑢 ∈ V |
16 | | vex 3436 |
. . . . . . . 8
⊢ 𝑣 ∈ V |
17 | 15, 16 | op1std 7841 |
. . . . . . 7
⊢ (𝑡 = 〈𝑢, 𝑣〉 → (1st ‘𝑡) = 𝑢) |
18 | 17 | csbeq1d 3836 |
. . . . . 6
⊢ (𝑡 = 〈𝑢, 𝑣〉 → ⦋(1st
‘𝑡) / 𝑥⦌⦋(2nd
‘𝑡) / 𝑦⦌𝐶 = ⦋𝑢 / 𝑥⦌⦋(2nd
‘𝑡) / 𝑦⦌𝐶) |
19 | 15, 16 | op2ndd 7842 |
. . . . . . . 8
⊢ (𝑡 = 〈𝑢, 𝑣〉 → (2nd ‘𝑡) = 𝑣) |
20 | 19 | csbeq1d 3836 |
. . . . . . 7
⊢ (𝑡 = 〈𝑢, 𝑣〉 → ⦋(2nd
‘𝑡) / 𝑦⦌𝐶 = ⦋𝑣 / 𝑦⦌𝐶) |
21 | 20 | csbeq2dv 3839 |
. . . . . 6
⊢ (𝑡 = 〈𝑢, 𝑣〉 → ⦋𝑢 / 𝑥⦌⦋(2nd
‘𝑡) / 𝑦⦌𝐶 = ⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶) |
22 | 18, 21 | eqtrd 2778 |
. . . . 5
⊢ (𝑡 = 〈𝑢, 𝑣〉 → ⦋(1st
‘𝑡) / 𝑥⦌⦋(2nd
‘𝑡) / 𝑦⦌𝐶 = ⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶) |
23 | 22 | mpomptx 7387 |
. . . 4
⊢ (𝑡 ∈ ∪ 𝑢 ∈ 𝐴 ({𝑢} × ⦋𝑢 / 𝑥⦌𝐵) ↦ ⦋(1st
‘𝑡) / 𝑥⦌⦋(2nd
‘𝑡) / 𝑦⦌𝐶) = (𝑢 ∈ 𝐴, 𝑣 ∈ ⦋𝑢 / 𝑥⦌𝐵 ↦ ⦋𝑢 / 𝑥⦌⦋𝑣 / 𝑦⦌𝐶) |
24 | 13, 14, 23 | 3eqtr4i 2776 |
. . 3
⊢ 𝐹 = (𝑡 ∈ ∪
𝑢 ∈ 𝐴 ({𝑢} × ⦋𝑢 / 𝑥⦌𝐵) ↦ ⦋(1st
‘𝑡) / 𝑥⦌⦋(2nd
‘𝑡) / 𝑦⦌𝐶) |
25 | 24 | dmmptss 6144 |
. 2
⊢ dom 𝐹 ⊆ ∪ 𝑢 ∈ 𝐴 ({𝑢} × ⦋𝑢 / 𝑥⦌𝐵) |
26 | | nfcv 2907 |
. . 3
⊢
Ⅎ𝑢({𝑥} × 𝐵) |
27 | | nfcv 2907 |
. . . 4
⊢
Ⅎ𝑥{𝑢} |
28 | 27, 2 | nfxp 5622 |
. . 3
⊢
Ⅎ𝑥({𝑢} × ⦋𝑢 / 𝑥⦌𝐵) |
29 | | sneq 4571 |
. . . 4
⊢ (𝑥 = 𝑢 → {𝑥} = {𝑢}) |
30 | 29, 9 | xpeq12d 5620 |
. . 3
⊢ (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × ⦋𝑢 / 𝑥⦌𝐵)) |
31 | 26, 28, 30 | cbviun 4966 |
. 2
⊢ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) = ∪
𝑢 ∈ 𝐴 ({𝑢} × ⦋𝑢 / 𝑥⦌𝐵) |
32 | 25, 31 | sseqtrri 3958 |
1
⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |