MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpox Structured version   Visualization version   GIF version

Theorem fmpox 7815
Description: Functionality, domain and codomain of a class given by the maps-to notation, where 𝐵(𝑥) is not constant but depends on 𝑥. (Contributed by NM, 29-Dec-2014.)
Hypothesis
Ref Expression
fmpox.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
fmpox (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpox
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3402 . . . . . . . 8 𝑧 ∈ V
2 vex 3402 . . . . . . . 8 𝑤 ∈ V
31, 2op1std 7749 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) = 𝑧)
43csbeq1d 3802 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥(2nd𝑣) / 𝑦𝐶)
51, 2op2ndd 7750 . . . . . . . 8 (𝑣 = ⟨𝑧, 𝑤⟩ → (2nd𝑣) = 𝑤)
65csbeq1d 3802 . . . . . . 7 (𝑣 = ⟨𝑧, 𝑤⟩ → (2nd𝑣) / 𝑦𝐶 = 𝑤 / 𝑦𝐶)
76csbeq2dv 3805 . . . . . 6 (𝑣 = ⟨𝑧, 𝑤⟩ → 𝑧 / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
84, 7eqtrd 2771 . . . . 5 (𝑣 = ⟨𝑧, 𝑤⟩ → (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
98eleq1d 2815 . . . 4 (𝑣 = ⟨𝑧, 𝑤⟩ → ((1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
109raliunxp 5693 . . 3 (∀𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)(1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷 ↔ ∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷)
11 nfv 1922 . . . . . . 7 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)
12 nfv 1922 . . . . . . 7 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)
13 nfv 1922 . . . . . . . . 9 𝑥 𝑧𝐴
14 nfcsb1v 3823 . . . . . . . . . 10 𝑥𝑧 / 𝑥𝐵
1514nfcri 2884 . . . . . . . . 9 𝑥 𝑤𝑧 / 𝑥𝐵
1613, 15nfan 1907 . . . . . . . 8 𝑥(𝑧𝐴𝑤𝑧 / 𝑥𝐵)
17 nfcsb1v 3823 . . . . . . . . 9 𝑥𝑧 / 𝑥𝑤 / 𝑦𝐶
1817nfeq2 2914 . . . . . . . 8 𝑥 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶
1916, 18nfan 1907 . . . . . . 7 𝑥((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
20 nfv 1922 . . . . . . . 8 𝑦(𝑧𝐴𝑤𝑧 / 𝑥𝐵)
21 nfcv 2897 . . . . . . . . . 10 𝑦𝑧
22 nfcsb1v 3823 . . . . . . . . . 10 𝑦𝑤 / 𝑦𝐶
2321, 22nfcsbw 3825 . . . . . . . . 9 𝑦𝑧 / 𝑥𝑤 / 𝑦𝐶
2423nfeq2 2914 . . . . . . . 8 𝑦 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶
2520, 24nfan 1907 . . . . . . 7 𝑦((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
26 eleq1w 2813 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2726adantr 484 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑥𝐴𝑧𝐴))
28 eleq1w 2813 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
29 csbeq1a 3812 . . . . . . . . . . 11 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
3029eleq2d 2816 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑤𝐵𝑤𝑧 / 𝑥𝐵))
3128, 30sylan9bbr 514 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐵𝑤𝑧 / 𝑥𝐵))
3227, 31anbi12d 634 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥𝐴𝑦𝐵) ↔ (𝑧𝐴𝑤𝑧 / 𝑥𝐵)))
33 csbeq1a 3812 . . . . . . . . . 10 (𝑦 = 𝑤𝐶 = 𝑤 / 𝑦𝐶)
34 csbeq1a 3812 . . . . . . . . . 10 (𝑥 = 𝑧𝑤 / 𝑦𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
3533, 34sylan9eqr 2793 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)
3635eqeq2d 2747 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑣 = 𝐶𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶))
3732, 36anbi12d 634 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶) ↔ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)))
3811, 12, 19, 25, 37cbvoprab12 7278 . . . . . 6 {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)}
39 df-mpo 7196 . . . . . 6 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑣⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
40 df-mpo 7196 . . . . . 6 (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶) = {⟨⟨𝑧, 𝑤⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑤𝑧 / 𝑥𝐵) ∧ 𝑣 = 𝑧 / 𝑥𝑤 / 𝑦𝐶)}
4138, 39, 403eqtr4i 2769 . . . . 5 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶)
42 fmpox.1 . . . . 5 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
438mpomptx 7301 . . . . 5 (𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵) ↦ (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶) = (𝑧𝐴, 𝑤𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶)
4441, 42, 433eqtr4i 2769 . . . 4 𝐹 = (𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵) ↦ (1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶)
4544fmpt 6905 . . 3 (∀𝑣 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)(1st𝑣) / 𝑥(2nd𝑣) / 𝑦𝐶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
4610, 45bitr3i 280 . 2 (∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
47 nfv 1922 . . 3 𝑧𝑦𝐵 𝐶𝐷
4817nfel1 2913 . . . 4 𝑥𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷
4914, 48nfralw 3137 . . 3 𝑥𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷
50 nfv 1922 . . . . 5 𝑤 𝐶𝐷
5122nfel1 2913 . . . . 5 𝑦𝑤 / 𝑦𝐶𝐷
5233eleq1d 2815 . . . . 5 (𝑦 = 𝑤 → (𝐶𝐷𝑤 / 𝑦𝐶𝐷))
5350, 51, 52cbvralw 3339 . . . 4 (∀𝑦𝐵 𝐶𝐷 ↔ ∀𝑤𝐵 𝑤 / 𝑦𝐶𝐷)
5434eleq1d 2815 . . . . 5 (𝑥 = 𝑧 → (𝑤 / 𝑦𝐶𝐷𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5529, 54raleqbidv 3303 . . . 4 (𝑥 = 𝑧 → (∀𝑤𝐵 𝑤 / 𝑦𝐶𝐷 ↔ ∀𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5653, 55syl5bb 286 . . 3 (𝑥 = 𝑧 → (∀𝑦𝐵 𝐶𝐷 ↔ ∀𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷))
5747, 49, 56cbvralw 3339 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 ↔ ∀𝑧𝐴𝑤 𝑧 / 𝑥𝐵𝑧 / 𝑥𝑤 / 𝑦𝐶𝐷)
58 nfcv 2897 . . . 4 𝑧({𝑥} × 𝐵)
59 nfcv 2897 . . . . 5 𝑥{𝑧}
6059, 14nfxp 5569 . . . 4 𝑥({𝑧} × 𝑧 / 𝑥𝐵)
61 sneq 4537 . . . . 5 (𝑥 = 𝑧 → {𝑥} = {𝑧})
6261, 29xpeq12d 5567 . . . 4 (𝑥 = 𝑧 → ({𝑥} × 𝐵) = ({𝑧} × 𝑧 / 𝑥𝐵))
6358, 60, 62cbviun 4931 . . 3 𝑥𝐴 ({𝑥} × 𝐵) = 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)
6463feq2i 6515 . 2 (𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷𝐹: 𝑧𝐴 ({𝑧} × 𝑧 / 𝑥𝐵)⟶𝐷)
6546, 57, 643bitr4i 306 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷𝐹: 𝑥𝐴 ({𝑥} × 𝐵)⟶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wcel 2112  wral 3051  csb 3798  {csn 4527  cop 4533   ciun 4890  cmpt 5120   × cxp 5534  wf 6354  cfv 6358  {coprab 7192  cmpo 7193  1st c1st 7737  2nd c2nd 7738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740
This theorem is referenced by:  fmpo  7816  eldmcoa  17525  gsum2d2lem  19312  gsum2d2  19313  gsumcom2  19314  dmdprd  19339  dprdval  19344  dprd2d2  19385  ablfaclem2  19427  ptbasfi  22432  ptcmplem1  22903  prdsxmslem2  23381  tglnfn  26592
  Copyright terms: Public domain W3C validator