Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑤 𝑥 ∈ 𝐴 |
2 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑤 𝑦 ∈ 𝐵 |
3 | 1, 2 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
4 | | cbvmpox2.4 |
. . . . 5
⊢
Ⅎ𝑤𝐶 |
5 | 4 | nfeq2 2924 |
. . . 4
⊢
Ⅎ𝑤 𝑢 = 𝐶 |
6 | 3, 5 | nfan 1902 |
. . 3
⊢
Ⅎ𝑤((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) |
7 | | cbvmpox2.1 |
. . . . . 6
⊢
Ⅎ𝑧𝐴 |
8 | 7 | nfcri 2894 |
. . . . 5
⊢
Ⅎ𝑧 𝑥 ∈ 𝐴 |
9 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑧 𝑦 ∈ 𝐵 |
10 | 8, 9 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | | cbvmpox2.3 |
. . . . 5
⊢
Ⅎ𝑧𝐶 |
12 | 11 | nfeq2 2924 |
. . . 4
⊢
Ⅎ𝑧 𝑢 = 𝐶 |
13 | 10, 12 | nfan 1902 |
. . 3
⊢
Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) |
14 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑥 𝑤 ∈ 𝐷 |
15 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝐵 |
16 | 14, 15 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑥(𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) |
17 | | cbvmpox2.5 |
. . . . 5
⊢
Ⅎ𝑥𝐸 |
18 | 17 | nfeq2 2924 |
. . . 4
⊢
Ⅎ𝑥 𝑢 = 𝐸 |
19 | 16, 18 | nfan 1902 |
. . 3
⊢
Ⅎ𝑥((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸) |
20 | | cbvmpox2.2 |
. . . . . 6
⊢
Ⅎ𝑦𝐷 |
21 | 20 | nfcri 2894 |
. . . . 5
⊢
Ⅎ𝑦 𝑤 ∈ 𝐷 |
22 | | nfv 1917 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝐵 |
23 | 21, 22 | nfan 1902 |
. . . 4
⊢
Ⅎ𝑦(𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) |
24 | | cbvmpox2.6 |
. . . . 5
⊢
Ⅎ𝑦𝐸 |
25 | 24 | nfeq2 2924 |
. . . 4
⊢
Ⅎ𝑦 𝑢 = 𝐸 |
26 | 23, 25 | nfan 1902 |
. . 3
⊢
Ⅎ𝑦((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸) |
27 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
28 | | cbvmpox2.7 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → 𝐴 = 𝐷) |
29 | 28 | eleq2d 2824 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷)) |
30 | 27, 29 | sylan9bb 510 |
. . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷)) |
31 | | simpr 485 |
. . . . . 6
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) |
32 | 31 | eleq1d 2823 |
. . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
33 | 30, 32 | anbi12d 631 |
. . . 4
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵))) |
34 | | cbvmpox2.8 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → 𝐶 = 𝐸) |
35 | 34 | ancoms 459 |
. . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → 𝐶 = 𝐸) |
36 | 35 | eqeq2d 2749 |
. . . 4
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑢 = 𝐶 ↔ 𝑢 = 𝐸)) |
37 | 33, 36 | anbi12d 631 |
. . 3
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸))) |
38 | 6, 13, 19, 26, 37 | cbvoprab12 7364 |
. 2
⊢
{〈〈𝑥,
𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} = {〈〈𝑤, 𝑧〉, 𝑢〉 ∣ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸)} |
39 | | df-mpo 7280 |
. 2
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} |
40 | | df-mpo 7280 |
. 2
⊢ (𝑤 ∈ 𝐷, 𝑧 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑤, 𝑧〉, 𝑢〉 ∣ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸)} |
41 | 38, 39, 40 | 3eqtr4i 2776 |
1
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ 𝐷, 𝑧 ∈ 𝐵 ↦ 𝐸) |