Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmpox2 Structured version   Visualization version   GIF version

Theorem cbvmpox2 44212
 Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 7241 allows 𝐴 to be a function of 𝑦, analogous to cbvmpox 7240. (Contributed by AV, 30-Mar-2019.)
Hypotheses
Ref Expression
cbvmpox2.1 𝑧𝐴
cbvmpox2.2 𝑦𝐷
cbvmpox2.3 𝑧𝐶
cbvmpox2.4 𝑤𝐶
cbvmpox2.5 𝑥𝐸
cbvmpox2.6 𝑦𝐸
cbvmpox2.7 (𝑦 = 𝑧𝐴 = 𝐷)
cbvmpox2.8 ((𝑦 = 𝑧𝑥 = 𝑤) → 𝐶 = 𝐸)
Assertion
Ref Expression
cbvmpox2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤𝐷, 𝑧𝐵𝐸)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧   𝑤,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cbvmpox2
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 nfv 1908 . . . . 5 𝑤 𝑥𝐴
2 nfv 1908 . . . . 5 𝑤 𝑦𝐵
31, 2nfan 1893 . . . 4 𝑤(𝑥𝐴𝑦𝐵)
4 cbvmpox2.4 . . . . 5 𝑤𝐶
54nfeq2 2999 . . . 4 𝑤 𝑢 = 𝐶
63, 5nfan 1893 . . 3 𝑤((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
7 cbvmpox2.1 . . . . . 6 𝑧𝐴
87nfcri 2975 . . . . 5 𝑧 𝑥𝐴
9 nfv 1908 . . . . 5 𝑧 𝑦𝐵
108, 9nfan 1893 . . . 4 𝑧(𝑥𝐴𝑦𝐵)
11 cbvmpox2.3 . . . . 5 𝑧𝐶
1211nfeq2 2999 . . . 4 𝑧 𝑢 = 𝐶
1310, 12nfan 1893 . . 3 𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)
14 nfv 1908 . . . . 5 𝑥 𝑤𝐷
15 nfv 1908 . . . . 5 𝑥 𝑧𝐵
1614, 15nfan 1893 . . . 4 𝑥(𝑤𝐷𝑧𝐵)
17 cbvmpox2.5 . . . . 5 𝑥𝐸
1817nfeq2 2999 . . . 4 𝑥 𝑢 = 𝐸
1916, 18nfan 1893 . . 3 𝑥((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)
20 cbvmpox2.2 . . . . . 6 𝑦𝐷
2120nfcri 2975 . . . . 5 𝑦 𝑤𝐷
22 nfv 1908 . . . . 5 𝑦 𝑧𝐵
2321, 22nfan 1893 . . . 4 𝑦(𝑤𝐷𝑧𝐵)
24 cbvmpox2.6 . . . . 5 𝑦𝐸
2524nfeq2 2999 . . . 4 𝑦 𝑢 = 𝐸
2623, 25nfan 1893 . . 3 𝑦((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)
27 eleq1w 2899 . . . . . 6 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
28 cbvmpox2.7 . . . . . . 7 (𝑦 = 𝑧𝐴 = 𝐷)
2928eleq2d 2902 . . . . . 6 (𝑦 = 𝑧 → (𝑤𝐴𝑤𝐷))
3027, 29sylan9bb 510 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑥𝐴𝑤𝐷))
31 simpr 485 . . . . . 6 ((𝑥 = 𝑤𝑦 = 𝑧) → 𝑦 = 𝑧)
3231eleq1d 2901 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑦𝐵𝑧𝐵))
3330, 32anbi12d 630 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑧) → ((𝑥𝐴𝑦𝐵) ↔ (𝑤𝐷𝑧𝐵)))
34 cbvmpox2.8 . . . . . 6 ((𝑦 = 𝑧𝑥 = 𝑤) → 𝐶 = 𝐸)
3534ancoms 459 . . . . 5 ((𝑥 = 𝑤𝑦 = 𝑧) → 𝐶 = 𝐸)
3635eqeq2d 2836 . . . 4 ((𝑥 = 𝑤𝑦 = 𝑧) → (𝑢 = 𝐶𝑢 = 𝐸))
3733, 36anbi12d 630 . . 3 ((𝑥 = 𝑤𝑦 = 𝑧) → (((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)))
386, 13, 19, 26, 37cbvoprab12 7236 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)} = {⟨⟨𝑤, 𝑧⟩, 𝑢⟩ ∣ ((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)}
39 df-mpo 7156 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑢⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑢 = 𝐶)}
40 df-mpo 7156 . 2 (𝑤𝐷, 𝑧𝐵𝐸) = {⟨⟨𝑤, 𝑧⟩, 𝑢⟩ ∣ ((𝑤𝐷𝑧𝐵) ∧ 𝑢 = 𝐸)}
4138, 39, 403eqtr4i 2858 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤𝐷, 𝑧𝐵𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  Ⅎwnfc 2965  {coprab 7152   ∈ cmpo 7153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pr 5325 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-opab 5125  df-oprab 7155  df-mpo 7156 This theorem is referenced by:  dmmpossx2  44213
 Copyright terms: Public domain W3C validator