| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑤 𝑥 ∈ 𝐴 |
| 2 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑤 𝑦 ∈ 𝐵 |
| 3 | 1, 2 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 4 | | cbvmpox2.4 |
. . . . 5
⊢
Ⅎ𝑤𝐶 |
| 5 | 4 | nfeq2 2917 |
. . . 4
⊢
Ⅎ𝑤 𝑢 = 𝐶 |
| 6 | 3, 5 | nfan 1899 |
. . 3
⊢
Ⅎ𝑤((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) |
| 7 | | cbvmpox2.1 |
. . . . . 6
⊢
Ⅎ𝑧𝐴 |
| 8 | 7 | nfcri 2891 |
. . . . 5
⊢
Ⅎ𝑧 𝑥 ∈ 𝐴 |
| 9 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑧 𝑦 ∈ 𝐵 |
| 10 | 8, 9 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 11 | | cbvmpox2.3 |
. . . . 5
⊢
Ⅎ𝑧𝐶 |
| 12 | 11 | nfeq2 2917 |
. . . 4
⊢
Ⅎ𝑧 𝑢 = 𝐶 |
| 13 | 10, 12 | nfan 1899 |
. . 3
⊢
Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) |
| 14 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥 𝑤 ∈ 𝐷 |
| 15 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝐵 |
| 16 | 14, 15 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑥(𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) |
| 17 | | cbvmpox2.5 |
. . . . 5
⊢
Ⅎ𝑥𝐸 |
| 18 | 17 | nfeq2 2917 |
. . . 4
⊢
Ⅎ𝑥 𝑢 = 𝐸 |
| 19 | 16, 18 | nfan 1899 |
. . 3
⊢
Ⅎ𝑥((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸) |
| 20 | | cbvmpox2.2 |
. . . . . 6
⊢
Ⅎ𝑦𝐷 |
| 21 | 20 | nfcri 2891 |
. . . . 5
⊢
Ⅎ𝑦 𝑤 ∈ 𝐷 |
| 22 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 23 | 21, 22 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑦(𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) |
| 24 | | cbvmpox2.6 |
. . . . 5
⊢
Ⅎ𝑦𝐸 |
| 25 | 24 | nfeq2 2917 |
. . . 4
⊢
Ⅎ𝑦 𝑢 = 𝐸 |
| 26 | 23, 25 | nfan 1899 |
. . 3
⊢
Ⅎ𝑦((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸) |
| 27 | | eleq1w 2818 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) |
| 28 | | cbvmpox2.7 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → 𝐴 = 𝐷) |
| 29 | 28 | eleq2d 2821 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷)) |
| 30 | 27, 29 | sylan9bb 509 |
. . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷)) |
| 31 | | simpr 484 |
. . . . . 6
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) |
| 32 | 31 | eleq1d 2820 |
. . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) |
| 33 | 30, 32 | anbi12d 632 |
. . . 4
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵))) |
| 34 | | cbvmpox2.8 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → 𝐶 = 𝐸) |
| 35 | 34 | ancoms 458 |
. . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → 𝐶 = 𝐸) |
| 36 | 35 | eqeq2d 2747 |
. . . 4
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑢 = 𝐶 ↔ 𝑢 = 𝐸)) |
| 37 | 33, 36 | anbi12d 632 |
. . 3
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸))) |
| 38 | 6, 13, 19, 26, 37 | cbvoprab12 7501 |
. 2
⊢
{〈〈𝑥,
𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} = {〈〈𝑤, 𝑧〉, 𝑢〉 ∣ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸)} |
| 39 | | df-mpo 7415 |
. 2
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} |
| 40 | | df-mpo 7415 |
. 2
⊢ (𝑤 ∈ 𝐷, 𝑧 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑤, 𝑧〉, 𝑢〉 ∣ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸)} |
| 41 | 38, 39, 40 | 3eqtr4i 2769 |
1
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ 𝐷, 𝑧 ∈ 𝐵 ↦ 𝐸) |