| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1913 | . . . . 5
⊢
Ⅎ𝑤 𝑥 ∈ 𝐴 | 
| 2 |  | nfv 1913 | . . . . 5
⊢
Ⅎ𝑤 𝑦 ∈ 𝐵 | 
| 3 | 1, 2 | nfan 1898 | . . . 4
⊢
Ⅎ𝑤(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) | 
| 4 |  | cbvmpox2.4 | . . . . 5
⊢
Ⅎ𝑤𝐶 | 
| 5 | 4 | nfeq2 2922 | . . . 4
⊢
Ⅎ𝑤 𝑢 = 𝐶 | 
| 6 | 3, 5 | nfan 1898 | . . 3
⊢
Ⅎ𝑤((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) | 
| 7 |  | cbvmpox2.1 | . . . . . 6
⊢
Ⅎ𝑧𝐴 | 
| 8 | 7 | nfcri 2896 | . . . . 5
⊢
Ⅎ𝑧 𝑥 ∈ 𝐴 | 
| 9 |  | nfv 1913 | . . . . 5
⊢
Ⅎ𝑧 𝑦 ∈ 𝐵 | 
| 10 | 8, 9 | nfan 1898 | . . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) | 
| 11 |  | cbvmpox2.3 | . . . . 5
⊢
Ⅎ𝑧𝐶 | 
| 12 | 11 | nfeq2 2922 | . . . 4
⊢
Ⅎ𝑧 𝑢 = 𝐶 | 
| 13 | 10, 12 | nfan 1898 | . . 3
⊢
Ⅎ𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) | 
| 14 |  | nfv 1913 | . . . . 5
⊢
Ⅎ𝑥 𝑤 ∈ 𝐷 | 
| 15 |  | nfv 1913 | . . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ 𝐵 | 
| 16 | 14, 15 | nfan 1898 | . . . 4
⊢
Ⅎ𝑥(𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) | 
| 17 |  | cbvmpox2.5 | . . . . 5
⊢
Ⅎ𝑥𝐸 | 
| 18 | 17 | nfeq2 2922 | . . . 4
⊢
Ⅎ𝑥 𝑢 = 𝐸 | 
| 19 | 16, 18 | nfan 1898 | . . 3
⊢
Ⅎ𝑥((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸) | 
| 20 |  | cbvmpox2.2 | . . . . . 6
⊢
Ⅎ𝑦𝐷 | 
| 21 | 20 | nfcri 2896 | . . . . 5
⊢
Ⅎ𝑦 𝑤 ∈ 𝐷 | 
| 22 |  | nfv 1913 | . . . . 5
⊢
Ⅎ𝑦 𝑧 ∈ 𝐵 | 
| 23 | 21, 22 | nfan 1898 | . . . 4
⊢
Ⅎ𝑦(𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) | 
| 24 |  | cbvmpox2.6 | . . . . 5
⊢
Ⅎ𝑦𝐸 | 
| 25 | 24 | nfeq2 2922 | . . . 4
⊢
Ⅎ𝑦 𝑢 = 𝐸 | 
| 26 | 23, 25 | nfan 1898 | . . 3
⊢
Ⅎ𝑦((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸) | 
| 27 |  | eleq1w 2823 | . . . . . 6
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | 
| 28 |  | cbvmpox2.7 | . . . . . . 7
⊢ (𝑦 = 𝑧 → 𝐴 = 𝐷) | 
| 29 | 28 | eleq2d 2826 | . . . . . 6
⊢ (𝑦 = 𝑧 → (𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷)) | 
| 30 | 27, 29 | sylan9bb 509 | . . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐷)) | 
| 31 |  | simpr 484 | . . . . . 6
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → 𝑦 = 𝑧) | 
| 32 | 31 | eleq1d 2825 | . . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵)) | 
| 33 | 30, 32 | anbi12d 632 | . . . 4
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵))) | 
| 34 |  | cbvmpox2.8 | . . . . . 6
⊢ ((𝑦 = 𝑧 ∧ 𝑥 = 𝑤) → 𝐶 = 𝐸) | 
| 35 | 34 | ancoms 458 | . . . . 5
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → 𝐶 = 𝐸) | 
| 36 | 35 | eqeq2d 2747 | . . . 4
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (𝑢 = 𝐶 ↔ 𝑢 = 𝐸)) | 
| 37 | 33, 36 | anbi12d 632 | . . 3
⊢ ((𝑥 = 𝑤 ∧ 𝑦 = 𝑧) → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶) ↔ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸))) | 
| 38 | 6, 13, 19, 26, 37 | cbvoprab12 7523 | . 2
⊢
{〈〈𝑥,
𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} = {〈〈𝑤, 𝑧〉, 𝑢〉 ∣ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸)} | 
| 39 |  | df-mpo 7437 | . 2
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑢〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑢 = 𝐶)} | 
| 40 |  | df-mpo 7437 | . 2
⊢ (𝑤 ∈ 𝐷, 𝑧 ∈ 𝐵 ↦ 𝐸) = {〈〈𝑤, 𝑧〉, 𝑢〉 ∣ ((𝑤 ∈ 𝐷 ∧ 𝑧 ∈ 𝐵) ∧ 𝑢 = 𝐸)} | 
| 41 | 38, 39, 40 | 3eqtr4i 2774 | 1
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ 𝐷, 𝑧 ∈ 𝐵 ↦ 𝐸) |