Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlerp Structured version   Visualization version   GIF version

Theorem ovnlerp 46659
Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnlerp.x (𝜑𝑋 ∈ Fin)
ovnlerp.n0 (𝜑𝑋 ≠ ∅)
ovnlerp.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnlerp.e (𝜑𝐸 ∈ ℝ+)
ovnlerp.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnlerp (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑖,𝑧   𝑧,𝐸   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐸(𝑖,𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnlerp
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . 4 𝑥𝜑
2 ovnlerp.m . . . . . 6 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
3 ssrab2 4027 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
42, 3eqsstri 3976 . . . . 5 𝑀 ⊆ ℝ*
54a1i 11 . . . 4 (𝜑𝑀 ⊆ ℝ*)
6 ovnlerp.x . . . . . 6 (𝜑𝑋 ∈ Fin)
7 ovnlerp.a . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
86, 7, 2ovnpnfelsup 46656 . . . . 5 (𝜑 → +∞ ∈ 𝑀)
98ne0d 4289 . . . 4 (𝜑𝑀 ≠ ∅)
10 0red 11115 . . . . 5 (𝜑 → 0 ∈ ℝ)
116, 7, 2ovnsupge0 46654 . . . . . 6 (𝜑𝑀 ⊆ (0[,]+∞))
12 0xr 11159 . . . . . . . . 9 0 ∈ ℝ*
1312a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ∈ ℝ*)
14 pnfxr 11166 . . . . . . . . 9 +∞ ∈ ℝ*
1514a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → +∞ ∈ ℝ*)
16 ssel2 3924 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 𝑦 ∈ (0[,]+∞))
17 iccgelb 13302 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦)
1813, 15, 16, 17syl3anc 1373 . . . . . . 7 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ≤ 𝑦)
1918ralrimiva 3124 . . . . . 6 (𝑀 ⊆ (0[,]+∞) → ∀𝑦𝑀 0 ≤ 𝑦)
2011, 19syl 17 . . . . 5 (𝜑 → ∀𝑦𝑀 0 ≤ 𝑦)
21 breq1 5092 . . . . . . 7 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
2221ralbidv 3155 . . . . . 6 (𝑥 = 0 → (∀𝑦𝑀 𝑥𝑦 ↔ ∀𝑦𝑀 0 ≤ 𝑦))
2322rspcev 3572 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
2410, 20, 23syl2anc 584 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
25 ovnlerp.e . . . 4 (𝜑𝐸 ∈ ℝ+)
261, 5, 9, 24, 25infrpge 45449 . . 3 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
27 nfv 1915 . . . 4 𝑤𝜑
28 simp3 1138 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
29 ovnlerp.n0 . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
306, 29, 7, 2ovnn0val 46648 . . . . . . . . 9 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
3130eqcomd 2737 . . . . . . . 8 (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴))
3231oveq1d 7361 . . . . . . 7 (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
33323ad2ant1 1133 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3428, 33breqtrd 5115 . . . . 5 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
35343exp 1119 . . . 4 (𝜑 → (𝑤𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))))
3627, 35reximdai 3234 . . 3 (𝜑 → (∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3726, 36mpd 15 . 2 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
38 nfcv 2894 . . 3 𝑤𝑀
39 nfrab1 3415 . . . 4 𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
402, 39nfcxfr 2892 . . 3 𝑧𝑀
41 nfv 1915 . . 3 𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
42 nfv 1915 . . 3 𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
43 breq1 5092 . . 3 (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4438, 40, 41, 42, 43cbvrexfw 3273 . 2 (∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
4537, 44sylib 218 1 (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4280   ciun 4939   class class class wbr 5089  cmpt 5170   × cxp 5612  ccom 5618  cfv 6481  (class class class)co 7346  m cmap 8750  Xcixp 8821  Fincfn 8869  infcinf 9325  cr 11005  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cn 12125  +crp 12890   +𝑒 cxad 13009  [,)cico 13247  [,]cicc 13248  cprod 15810  volcvol 25391  Σ^csumge0 46459  voln*covoln 46633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393  df-sumge0 46460  df-ovoln 46634
This theorem is referenced by:  ovncvrrp  46661
  Copyright terms: Public domain W3C validator