| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnlerp | Structured version Visualization version GIF version | ||
| Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovnlerp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ovnlerp.n0 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| ovnlerp.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
| ovnlerp.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| ovnlerp.m | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| Ref | Expression |
|---|---|
| ovnlerp | ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ovnlerp.m | . . . . . 6 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 3 | ssrab2 4055 | . . . . . 6 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ ℝ* | |
| 4 | 2, 3 | eqsstri 4005 | . . . . 5 ⊢ 𝑀 ⊆ ℝ* |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑀 ⊆ ℝ*) |
| 6 | ovnlerp.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 7 | ovnlerp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
| 8 | 6, 7, 2 | ovnpnfelsup 46588 | . . . . 5 ⊢ (𝜑 → +∞ ∈ 𝑀) |
| 9 | 8 | ne0d 4317 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ ∅) |
| 10 | 0red 11238 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 11 | 6, 7, 2 | ovnsupge0 46586 | . . . . . 6 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
| 12 | 0xr 11282 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ∈ ℝ*) |
| 14 | pnfxr 11289 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → +∞ ∈ ℝ*) |
| 16 | ssel2 3953 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 𝑦 ∈ (0[,]+∞)) | |
| 17 | iccgelb 13419 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦) | |
| 18 | 13, 15, 16, 17 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ≤ 𝑦) |
| 19 | 18 | ralrimiva 3132 | . . . . . 6 ⊢ (𝑀 ⊆ (0[,]+∞) → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
| 20 | 11, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
| 21 | breq1 5122 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
| 22 | 21 | ralbidv 3163 | . . . . . 6 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦)) |
| 23 | 22 | rspcev 3601 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
| 24 | 10, 20, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
| 25 | ovnlerp.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 26 | 1, 5, 9, 24, 25 | infrpge 45378 | . . 3 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) |
| 27 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤𝜑 | |
| 28 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) | |
| 29 | ovnlerp.n0 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 30 | 6, 29, 7, 2 | ovnn0val 46580 | . . . . . . . . 9 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
| 31 | 30 | eqcomd 2741 | . . . . . . . 8 ⊢ (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴)) |
| 32 | 31 | oveq1d 7420 | . . . . . . 7 ⊢ (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 33 | 32 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 34 | 28, 33 | breqtrd 5145 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 35 | 34 | 3exp 1119 | . . . 4 ⊢ (𝜑 → (𝑤 ∈ 𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))) |
| 36 | 27, 35 | reximdai 3244 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
| 37 | 26, 36 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 38 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑤𝑀 | |
| 39 | nfrab1 3436 | . . . 4 ⊢ Ⅎ𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 40 | 2, 39 | nfcxfr 2896 | . . 3 ⊢ Ⅎ𝑧𝑀 |
| 41 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
| 42 | nfv 1914 | . . 3 ⊢ Ⅎ𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
| 43 | breq1 5122 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) | |
| 44 | 38, 40, 41, 42, 43 | cbvrexfw 3285 | . 2 ⊢ (∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 45 | 37, 44 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 {crab 3415 ⊆ wss 3926 ∅c0 4308 ∪ ciun 4967 class class class wbr 5119 ↦ cmpt 5201 × cxp 5652 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Xcixp 8911 Fincfn 8959 infcinf 9453 ℝcr 11128 0cc0 11129 +∞cpnf 11266 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 ℕcn 12240 ℝ+crp 13008 +𝑒 cxad 13126 [,)cico 13364 [,]cicc 13365 ∏cprod 15919 volcvol 25416 Σ^csumge0 46391 voln*covoln 46565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 df-prod 15920 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cmp 23325 df-ovol 25417 df-vol 25418 df-sumge0 46392 df-ovoln 46566 |
| This theorem is referenced by: ovncvrrp 46593 |
| Copyright terms: Public domain | W3C validator |