Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlerp Structured version   Visualization version   GIF version

Theorem ovnlerp 41289
Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnlerp.x (𝜑𝑋 ∈ Fin)
ovnlerp.n0 (𝜑𝑋 ≠ ∅)
ovnlerp.a (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
ovnlerp.e (𝜑𝐸 ∈ ℝ+)
ovnlerp.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnlerp (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑖,𝑧   𝑧,𝐸   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐸(𝑖,𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnlerp
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1995 . . . 4 𝑥𝜑
2 ovnlerp.m . . . . . 6 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
3 ssrab2 3836 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
42, 3eqsstri 3784 . . . . 5 𝑀 ⊆ ℝ*
54a1i 11 . . . 4 (𝜑𝑀 ⊆ ℝ*)
6 ovnlerp.x . . . . . 6 (𝜑𝑋 ∈ Fin)
7 ovnlerp.a . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
86, 7, 2ovnpnfelsup 41286 . . . . 5 (𝜑 → +∞ ∈ 𝑀)
9 ne0i 4069 . . . . 5 (+∞ ∈ 𝑀𝑀 ≠ ∅)
108, 9syl 17 . . . 4 (𝜑𝑀 ≠ ∅)
11 0red 10241 . . . . 5 (𝜑 → 0 ∈ ℝ)
126, 7, 2ovnsupge0 41284 . . . . . 6 (𝜑𝑀 ⊆ (0[,]+∞))
13 0xr 10286 . . . . . . . . 9 0 ∈ ℝ*
1413a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ∈ ℝ*)
15 pnfxr 10292 . . . . . . . . 9 +∞ ∈ ℝ*
1615a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → +∞ ∈ ℝ*)
17 ssel2 3747 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 𝑦 ∈ (0[,]+∞))
18 iccgelb 12428 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦)
1914, 16, 17, 18syl3anc 1476 . . . . . . 7 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ≤ 𝑦)
2019ralrimiva 3115 . . . . . 6 (𝑀 ⊆ (0[,]+∞) → ∀𝑦𝑀 0 ≤ 𝑦)
2112, 20syl 17 . . . . 5 (𝜑 → ∀𝑦𝑀 0 ≤ 𝑦)
22 breq1 4789 . . . . . . 7 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
2322ralbidv 3135 . . . . . 6 (𝑥 = 0 → (∀𝑦𝑀 𝑥𝑦 ↔ ∀𝑦𝑀 0 ≤ 𝑦))
2423rspcev 3460 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
2511, 21, 24syl2anc 573 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
26 ovnlerp.e . . . 4 (𝜑𝐸 ∈ ℝ+)
271, 5, 10, 25, 26infrpge 40076 . . 3 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
28 nfv 1995 . . . 4 𝑤𝜑
29 simp3 1132 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
30 ovnlerp.n0 . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
316, 30, 7, 2ovnn0val 41278 . . . . . . . . 9 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
3231eqcomd 2777 . . . . . . . 8 (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴))
3332oveq1d 6806 . . . . . . 7 (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
34333ad2ant1 1127 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3529, 34breqtrd 4812 . . . . 5 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
36353exp 1112 . . . 4 (𝜑 → (𝑤𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))))
3728, 36reximdai 3160 . . 3 (𝜑 → (∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3827, 37mpd 15 . 2 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
39 nfcv 2913 . . 3 𝑤𝑀
40 nfrab1 3271 . . . 4 𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
412, 40nfcxfr 2911 . . 3 𝑧𝑀
42 nfv 1995 . . 3 𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
43 nfv 1995 . . 3 𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
44 breq1 4789 . . 3 (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4539, 41, 42, 43, 44cbvrexf 3315 . 2 (∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
4638, 45sylib 208 1 (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  wss 3723  c0 4063   ciun 4654   class class class wbr 4786  cmpt 4863   × cxp 5247  ccom 5253  cfv 6029  (class class class)co 6791  𝑚 cmap 8007  Xcixp 8060  Fincfn 8107  infcinf 8501  cr 10135  0cc0 10136  +∞cpnf 10271  *cxr 10273   < clt 10274  cle 10275  cn 11220  +crp 12028   +𝑒 cxad 12142  [,)cico 12375  [,]cicc 12376  cprod 14835  volcvol 23444  Σ^csumge0 41089  voln*covoln 41263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fi 8471  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12144  df-xadd 12145  df-xmul 12146  df-ioo 12377  df-ico 12379  df-icc 12380  df-fz 12527  df-fzo 12667  df-fl 12794  df-seq 13002  df-exp 13061  df-hash 13315  df-cj 14040  df-re 14041  df-im 14042  df-sqrt 14176  df-abs 14177  df-clim 14420  df-rlim 14421  df-sum 14618  df-prod 14836  df-rest 16284  df-topgen 16305  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-top 20912  df-topon 20929  df-bases 20964  df-cmp 21404  df-ovol 23445  df-vol 23446  df-sumge0 41090  df-ovoln 41264
This theorem is referenced by:  ovncvrrp  41291
  Copyright terms: Public domain W3C validator