Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnlerp | Structured version Visualization version GIF version |
Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnlerp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnlerp.n0 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
ovnlerp.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
ovnlerp.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
ovnlerp.m | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
Ref | Expression |
---|---|
ovnlerp | ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | ovnlerp.m | . . . . . 6 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
3 | ssrab2 4009 | . . . . . 6 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ ℝ* | |
4 | 2, 3 | eqsstri 3951 | . . . . 5 ⊢ 𝑀 ⊆ ℝ* |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑀 ⊆ ℝ*) |
6 | ovnlerp.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | ovnlerp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
8 | 6, 7, 2 | ovnpnfelsup 43987 | . . . . 5 ⊢ (𝜑 → +∞ ∈ 𝑀) |
9 | 8 | ne0d 4266 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ ∅) |
10 | 0red 10909 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
11 | 6, 7, 2 | ovnsupge0 43985 | . . . . . 6 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
12 | 0xr 10953 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ∈ ℝ*) |
14 | pnfxr 10960 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → +∞ ∈ ℝ*) |
16 | ssel2 3912 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 𝑦 ∈ (0[,]+∞)) | |
17 | iccgelb 13064 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦) | |
18 | 13, 15, 16, 17 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ≤ 𝑦) |
19 | 18 | ralrimiva 3107 | . . . . . 6 ⊢ (𝑀 ⊆ (0[,]+∞) → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
20 | 11, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
21 | breq1 5073 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
22 | 21 | ralbidv 3120 | . . . . . 6 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦)) |
23 | 22 | rspcev 3552 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
24 | 10, 20, 23 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
25 | ovnlerp.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
26 | 1, 5, 9, 24, 25 | infrpge 42780 | . . 3 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) |
27 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑤𝜑 | |
28 | simp3 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) | |
29 | ovnlerp.n0 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
30 | 6, 29, 7, 2 | ovnn0val 43979 | . . . . . . . . 9 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
31 | 30 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴)) |
32 | 31 | oveq1d 7270 | . . . . . . 7 ⊢ (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
33 | 32 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
34 | 28, 33 | breqtrd 5096 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
35 | 34 | 3exp 1117 | . . . 4 ⊢ (𝜑 → (𝑤 ∈ 𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))) |
36 | 27, 35 | reximdai 3239 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
37 | 26, 36 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
38 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑤𝑀 | |
39 | nfrab1 3310 | . . . 4 ⊢ Ⅎ𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
40 | 2, 39 | nfcxfr 2904 | . . 3 ⊢ Ⅎ𝑧𝑀 |
41 | nfv 1918 | . . 3 ⊢ Ⅎ𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
42 | nfv 1918 | . . 3 ⊢ Ⅎ𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
43 | breq1 5073 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) | |
44 | 38, 40, 41, 42, 43 | cbvrexfw 3360 | . 2 ⊢ (∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
45 | 37, 44 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Xcixp 8643 Fincfn 8691 infcinf 9130 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℕcn 11903 ℝ+crp 12659 +𝑒 cxad 12775 [,)cico 13010 [,]cicc 13011 ∏cprod 15543 volcvol 24532 Σ^csumge0 43790 voln*covoln 43964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-prod 15544 df-rest 17050 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cmp 22446 df-ovol 24533 df-vol 24534 df-sumge0 43791 df-ovoln 43965 |
This theorem is referenced by: ovncvrrp 43992 |
Copyright terms: Public domain | W3C validator |