Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlerp Structured version   Visualization version   GIF version

Theorem ovnlerp 46518
Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnlerp.x (𝜑𝑋 ∈ Fin)
ovnlerp.n0 (𝜑𝑋 ≠ ∅)
ovnlerp.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnlerp.e (𝜑𝐸 ∈ ℝ+)
ovnlerp.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnlerp (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑖,𝑧   𝑧,𝐸   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐸(𝑖,𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnlerp
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1912 . . . 4 𝑥𝜑
2 ovnlerp.m . . . . . 6 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
3 ssrab2 4090 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
42, 3eqsstri 4030 . . . . 5 𝑀 ⊆ ℝ*
54a1i 11 . . . 4 (𝜑𝑀 ⊆ ℝ*)
6 ovnlerp.x . . . . . 6 (𝜑𝑋 ∈ Fin)
7 ovnlerp.a . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
86, 7, 2ovnpnfelsup 46515 . . . . 5 (𝜑 → +∞ ∈ 𝑀)
98ne0d 4348 . . . 4 (𝜑𝑀 ≠ ∅)
10 0red 11262 . . . . 5 (𝜑 → 0 ∈ ℝ)
116, 7, 2ovnsupge0 46513 . . . . . 6 (𝜑𝑀 ⊆ (0[,]+∞))
12 0xr 11306 . . . . . . . . 9 0 ∈ ℝ*
1312a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ∈ ℝ*)
14 pnfxr 11313 . . . . . . . . 9 +∞ ∈ ℝ*
1514a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → +∞ ∈ ℝ*)
16 ssel2 3990 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 𝑦 ∈ (0[,]+∞))
17 iccgelb 13440 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦)
1813, 15, 16, 17syl3anc 1370 . . . . . . 7 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ≤ 𝑦)
1918ralrimiva 3144 . . . . . 6 (𝑀 ⊆ (0[,]+∞) → ∀𝑦𝑀 0 ≤ 𝑦)
2011, 19syl 17 . . . . 5 (𝜑 → ∀𝑦𝑀 0 ≤ 𝑦)
21 breq1 5151 . . . . . . 7 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
2221ralbidv 3176 . . . . . 6 (𝑥 = 0 → (∀𝑦𝑀 𝑥𝑦 ↔ ∀𝑦𝑀 0 ≤ 𝑦))
2322rspcev 3622 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
2410, 20, 23syl2anc 584 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
25 ovnlerp.e . . . 4 (𝜑𝐸 ∈ ℝ+)
261, 5, 9, 24, 25infrpge 45301 . . 3 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
27 nfv 1912 . . . 4 𝑤𝜑
28 simp3 1137 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
29 ovnlerp.n0 . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
306, 29, 7, 2ovnn0val 46507 . . . . . . . . 9 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
3130eqcomd 2741 . . . . . . . 8 (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴))
3231oveq1d 7446 . . . . . . 7 (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
33323ad2ant1 1132 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3428, 33breqtrd 5174 . . . . 5 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
35343exp 1118 . . . 4 (𝜑 → (𝑤𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))))
3627, 35reximdai 3259 . . 3 (𝜑 → (∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3726, 36mpd 15 . 2 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
38 nfcv 2903 . . 3 𝑤𝑀
39 nfrab1 3454 . . . 4 𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
402, 39nfcxfr 2901 . . 3 𝑧𝑀
41 nfv 1912 . . 3 𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
42 nfv 1912 . . 3 𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
43 breq1 5151 . . 3 (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4438, 40, 41, 42, 43cbvrexfw 3303 . 2 (∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
4537, 44sylib 218 1 (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  wss 3963  c0 4339   ciun 4996   class class class wbr 5148  cmpt 5231   × cxp 5687  ccom 5693  cfv 6563  (class class class)co 7431  m cmap 8865  Xcixp 8936  Fincfn 8984  infcinf 9479  cr 11152  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cn 12264  +crp 13032   +𝑒 cxad 13150  [,)cico 13386  [,]cicc 13387  cprod 15936  volcvol 25512  Σ^csumge0 46318  voln*covoln 46492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514  df-sumge0 46319  df-ovoln 46493
This theorem is referenced by:  ovncvrrp  46520
  Copyright terms: Public domain W3C validator