| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnlerp | Structured version Visualization version GIF version | ||
| Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovnlerp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| ovnlerp.n0 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
| ovnlerp.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
| ovnlerp.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
| ovnlerp.m | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| Ref | Expression |
|---|---|
| ovnlerp | ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ovnlerp.m | . . . . . 6 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 3 | ssrab2 4043 | . . . . . 6 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ ℝ* | |
| 4 | 2, 3 | eqsstri 3993 | . . . . 5 ⊢ 𝑀 ⊆ ℝ* |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑀 ⊆ ℝ*) |
| 6 | ovnlerp.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 7 | ovnlerp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
| 8 | 6, 7, 2 | ovnpnfelsup 46557 | . . . . 5 ⊢ (𝜑 → +∞ ∈ 𝑀) |
| 9 | 8 | ne0d 4305 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ ∅) |
| 10 | 0red 11177 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 11 | 6, 7, 2 | ovnsupge0 46555 | . . . . . 6 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
| 12 | 0xr 11221 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ∈ ℝ*) |
| 14 | pnfxr 11228 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → +∞ ∈ ℝ*) |
| 16 | ssel2 3941 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 𝑦 ∈ (0[,]+∞)) | |
| 17 | iccgelb 13363 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦) | |
| 18 | 13, 15, 16, 17 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ≤ 𝑦) |
| 19 | 18 | ralrimiva 3125 | . . . . . 6 ⊢ (𝑀 ⊆ (0[,]+∞) → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
| 20 | 11, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
| 21 | breq1 5110 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
| 22 | 21 | ralbidv 3156 | . . . . . 6 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦)) |
| 23 | 22 | rspcev 3588 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
| 24 | 10, 20, 23 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
| 25 | ovnlerp.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
| 26 | 1, 5, 9, 24, 25 | infrpge 45347 | . . 3 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) |
| 27 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤𝜑 | |
| 28 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) | |
| 29 | ovnlerp.n0 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
| 30 | 6, 29, 7, 2 | ovnn0val 46549 | . . . . . . . . 9 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
| 31 | 30 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴)) |
| 32 | 31 | oveq1d 7402 | . . . . . . 7 ⊢ (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 33 | 32 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 34 | 28, 33 | breqtrd 5133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 35 | 34 | 3exp 1119 | . . . 4 ⊢ (𝜑 → (𝑤 ∈ 𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))) |
| 36 | 27, 35 | reximdai 3239 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
| 37 | 26, 36 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 38 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑤𝑀 | |
| 39 | nfrab1 3426 | . . . 4 ⊢ Ⅎ𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 40 | 2, 39 | nfcxfr 2889 | . . 3 ⊢ Ⅎ𝑧𝑀 |
| 41 | nfv 1914 | . . 3 ⊢ Ⅎ𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
| 42 | nfv 1914 | . . 3 ⊢ Ⅎ𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
| 43 | breq1 5110 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) | |
| 44 | 38, 40, 41, 42, 43 | cbvrexfw 3279 | . 2 ⊢ (∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| 45 | 37, 44 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∅c0 4296 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Xcixp 8870 Fincfn 8918 infcinf 9392 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕcn 12186 ℝ+crp 12951 +𝑒 cxad 13070 [,)cico 13308 [,]cicc 13309 ∏cprod 15869 volcvol 25364 Σ^csumge0 46360 voln*covoln 46534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-prod 15870 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-ovol 25365 df-vol 25366 df-sumge0 46361 df-ovoln 46535 |
| This theorem is referenced by: ovncvrrp 46562 |
| Copyright terms: Public domain | W3C validator |