Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnlerp Structured version   Visualization version   GIF version

Theorem ovnlerp 45832
Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
ovnlerp.x (𝜑𝑋 ∈ Fin)
ovnlerp.n0 (𝜑𝑋 ≠ ∅)
ovnlerp.a (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
ovnlerp.e (𝜑𝐸 ∈ ℝ+)
ovnlerp.m 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
Assertion
Ref Expression
ovnlerp (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑖,𝑧   𝑧,𝐸   𝑖,𝑋,𝑗,𝑘,𝑧   𝜑,𝑖,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐸(𝑖,𝑗,𝑘)   𝑀(𝑧,𝑖,𝑗,𝑘)

Proof of Theorem ovnlerp
Dummy variables 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . . 4 𝑥𝜑
2 ovnlerp.m . . . . . 6 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
3 ssrab2 4072 . . . . . 6 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} ⊆ ℝ*
42, 3eqsstri 4011 . . . . 5 𝑀 ⊆ ℝ*
54a1i 11 . . . 4 (𝜑𝑀 ⊆ ℝ*)
6 ovnlerp.x . . . . . 6 (𝜑𝑋 ∈ Fin)
7 ovnlerp.a . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑m 𝑋))
86, 7, 2ovnpnfelsup 45829 . . . . 5 (𝜑 → +∞ ∈ 𝑀)
98ne0d 4330 . . . 4 (𝜑𝑀 ≠ ∅)
10 0red 11218 . . . . 5 (𝜑 → 0 ∈ ℝ)
116, 7, 2ovnsupge0 45827 . . . . . 6 (𝜑𝑀 ⊆ (0[,]+∞))
12 0xr 11262 . . . . . . . . 9 0 ∈ ℝ*
1312a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ∈ ℝ*)
14 pnfxr 11269 . . . . . . . . 9 +∞ ∈ ℝ*
1514a1i 11 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → +∞ ∈ ℝ*)
16 ssel2 3972 . . . . . . . 8 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 𝑦 ∈ (0[,]+∞))
17 iccgelb 13383 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦)
1813, 15, 16, 17syl3anc 1368 . . . . . . 7 ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦𝑀) → 0 ≤ 𝑦)
1918ralrimiva 3140 . . . . . 6 (𝑀 ⊆ (0[,]+∞) → ∀𝑦𝑀 0 ≤ 𝑦)
2011, 19syl 17 . . . . 5 (𝜑 → ∀𝑦𝑀 0 ≤ 𝑦)
21 breq1 5144 . . . . . . 7 (𝑥 = 0 → (𝑥𝑦 ↔ 0 ≤ 𝑦))
2221ralbidv 3171 . . . . . 6 (𝑥 = 0 → (∀𝑦𝑀 𝑥𝑦 ↔ ∀𝑦𝑀 0 ≤ 𝑦))
2322rspcev 3606 . . . . 5 ((0 ∈ ℝ ∧ ∀𝑦𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
2410, 20, 23syl2anc 583 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑀 𝑥𝑦)
25 ovnlerp.e . . . 4 (𝜑𝐸 ∈ ℝ+)
261, 5, 9, 24, 25infrpge 44615 . . 3 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
27 nfv 1909 . . . 4 𝑤𝜑
28 simp3 1135 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸))
29 ovnlerp.n0 . . . . . . . . . 10 (𝜑𝑋 ≠ ∅)
306, 29, 7, 2ovnn0val 45821 . . . . . . . . 9 (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < ))
3130eqcomd 2732 . . . . . . . 8 (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴))
3231oveq1d 7419 . . . . . . 7 (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
33323ad2ant1 1130 . . . . . 6 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
3428, 33breqtrd 5167 . . . . 5 ((𝜑𝑤𝑀𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
35343exp 1116 . . . 4 (𝜑 → (𝑤𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))))
3627, 35reximdai 3252 . . 3 (𝜑 → (∃𝑤𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
3726, 36mpd 15 . 2 (𝜑 → ∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
38 nfcv 2897 . . 3 𝑤𝑀
39 nfrab1 3445 . . . 4 𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
402, 39nfcxfr 2895 . . 3 𝑧𝑀
41 nfv 1909 . . 3 𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
42 nfv 1909 . . 3 𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)
43 breq1 5144 . . 3 (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))
4438, 40, 41, 42, 43cbvrexfw 3296 . 2 (∃𝑤𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
4537, 44sylib 217 1 (𝜑 → ∃𝑧𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  {crab 3426  wss 3943  c0 4317   ciun 4990   class class class wbr 5141  cmpt 5224   × cxp 5667  ccom 5673  cfv 6536  (class class class)co 7404  m cmap 8819  Xcixp 8890  Fincfn 8938  infcinf 9435  cr 11108  0cc0 11109  +∞cpnf 11246  *cxr 11248   < clt 11249  cle 11250  cn 12213  +crp 12977   +𝑒 cxad 13093  [,)cico 13329  [,]cicc 13330  cprod 15852  volcvol 25342  Σ^csumge0 45632  voln*covoln 45806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-q 12934  df-rp 12978  df-xneg 13095  df-xadd 13096  df-xmul 13097  df-ioo 13331  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-fl 13760  df-seq 13970  df-exp 14030  df-hash 14293  df-cj 15049  df-re 15050  df-im 15051  df-sqrt 15185  df-abs 15186  df-clim 15435  df-rlim 15436  df-sum 15636  df-prod 15853  df-rest 17374  df-topgen 17395  df-psmet 21227  df-xmet 21228  df-met 21229  df-bl 21230  df-mopn 21231  df-top 22746  df-topon 22763  df-bases 22799  df-cmp 23241  df-ovol 25343  df-vol 25344  df-sumge0 45633  df-ovoln 45807
This theorem is referenced by:  ovncvrrp  45834
  Copyright terms: Public domain W3C validator