![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnlerp | Structured version Visualization version GIF version |
Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovnlerp.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnlerp.n0 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
ovnlerp.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
ovnlerp.e | ⊢ (𝜑 → 𝐸 ∈ ℝ+) |
ovnlerp.m | ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
Ref | Expression |
---|---|
ovnlerp | ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | ovnlerp.m | . . . . . 6 ⊢ 𝑀 = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
3 | ssrab2 4103 | . . . . . 6 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ ℝ* | |
4 | 2, 3 | eqsstri 4043 | . . . . 5 ⊢ 𝑀 ⊆ ℝ* |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑀 ⊆ ℝ*) |
6 | ovnlerp.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
7 | ovnlerp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
8 | 6, 7, 2 | ovnpnfelsup 46480 | . . . . 5 ⊢ (𝜑 → +∞ ∈ 𝑀) |
9 | 8 | ne0d 4365 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ ∅) |
10 | 0red 11293 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
11 | 6, 7, 2 | ovnsupge0 46478 | . . . . . 6 ⊢ (𝜑 → 𝑀 ⊆ (0[,]+∞)) |
12 | 0xr 11337 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ∈ ℝ*) |
14 | pnfxr 11344 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → +∞ ∈ ℝ*) |
16 | ssel2 4003 | . . . . . . . 8 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 𝑦 ∈ (0[,]+∞)) | |
17 | iccgelb 13463 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦) | |
18 | 13, 15, 16, 17 | syl3anc 1371 | . . . . . . 7 ⊢ ((𝑀 ⊆ (0[,]+∞) ∧ 𝑦 ∈ 𝑀) → 0 ≤ 𝑦) |
19 | 18 | ralrimiva 3152 | . . . . . 6 ⊢ (𝑀 ⊆ (0[,]+∞) → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
20 | 11, 19 | syl 17 | . . . . 5 ⊢ (𝜑 → ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) |
21 | breq1 5169 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦)) | |
22 | 21 | ralbidv 3184 | . . . . . 6 ⊢ (𝑥 = 0 → (∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦)) |
23 | 22 | rspcev 3635 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ ∀𝑦 ∈ 𝑀 0 ≤ 𝑦) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
24 | 10, 20, 23 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑀 𝑥 ≤ 𝑦) |
25 | ovnlerp.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ ℝ+) | |
26 | 1, 5, 9, 24, 25 | infrpge 45266 | . . 3 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) |
27 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤𝜑 | |
28 | simp3 1138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) | |
29 | ovnlerp.n0 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
30 | 6, 29, 7, 2 | ovnn0val 46472 | . . . . . . . . 9 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = inf(𝑀, ℝ*, < )) |
31 | 30 | eqcomd 2746 | . . . . . . . 8 ⊢ (𝜑 → inf(𝑀, ℝ*, < ) = ((voln*‘𝑋)‘𝐴)) |
32 | 31 | oveq1d 7463 | . . . . . . 7 ⊢ (𝜑 → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
33 | 32 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → (inf(𝑀, ℝ*, < ) +𝑒 𝐸) = (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
34 | 28, 33 | breqtrd 5192 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸)) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
35 | 34 | 3exp 1119 | . . . 4 ⊢ (𝜑 → (𝑤 ∈ 𝑀 → (𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)))) |
36 | 27, 35 | reximdai 3267 | . . 3 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 𝑤 ≤ (inf(𝑀, ℝ*, < ) +𝑒 𝐸) → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) |
37 | 26, 36 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
38 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑤𝑀 | |
39 | nfrab1 3464 | . . . 4 ⊢ Ⅎ𝑧{𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
40 | 2, 39 | nfcxfr 2906 | . . 3 ⊢ Ⅎ𝑧𝑀 |
41 | nfv 1913 | . . 3 ⊢ Ⅎ𝑧 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
42 | nfv 1913 | . . 3 ⊢ Ⅎ𝑤 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) | |
43 | breq1 5169 | . . 3 ⊢ (𝑤 = 𝑧 → (𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸))) | |
44 | 38, 40, 41, 42, 43 | cbvrexfw 3311 | . 2 ⊢ (∃𝑤 ∈ 𝑀 𝑤 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸) ↔ ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
45 | 37, 44 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑀 𝑧 ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 ∪ ciun 5015 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Xcixp 8955 Fincfn 9003 infcinf 9510 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 ℕcn 12293 ℝ+crp 13057 +𝑒 cxad 13173 [,)cico 13409 [,]cicc 13410 ∏cprod 15951 volcvol 25517 Σ^csumge0 46283 voln*covoln 46457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-prod 15952 df-rest 17482 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-top 22921 df-topon 22938 df-bases 22974 df-cmp 23416 df-ovol 25518 df-vol 25519 df-sumge0 46284 df-ovoln 46458 |
This theorem is referenced by: ovncvrrp 46485 |
Copyright terms: Public domain | W3C validator |