| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfimafnf | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Thierry Arnoux, 24-Apr-2017.) |
| Ref | Expression |
|---|---|
| dfimafnf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfimafnf.2 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| dfimafnf | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima2 6036 | . . 3 ⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦} | |
| 2 | ssel 3943 | . . . . . . 7 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑧 ∈ 𝐴 → 𝑧 ∈ dom 𝐹)) | |
| 3 | eqcom 2737 | . . . . . . . . 9 ⊢ ((𝐹‘𝑧) = 𝑦 ↔ 𝑦 = (𝐹‘𝑧)) | |
| 4 | funbrfvb 6917 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) = 𝑦 ↔ 𝑧𝐹𝑦)) | |
| 5 | 3, 4 | bitr3id 285 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)) |
| 6 | 5 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑧 ∈ dom 𝐹 → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦))) |
| 7 | 2, 6 | syl9r 78 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑧 ∈ 𝐴 → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)))) |
| 8 | 7 | imp31 417 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑧 ∈ 𝐴) → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)) |
| 9 | 8 | rexbidva 3156 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦)) |
| 10 | 9 | abbidv 2796 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦}) |
| 11 | 1, 10 | eqtr4id 2784 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)}) |
| 12 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
| 13 | dfimafnf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 14 | dfimafnf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 15 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 16 | 14, 15 | nffv 6871 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 17 | 16 | nfeq2 2910 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = (𝐹‘𝑧) |
| 18 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = (𝐹‘𝑥) | |
| 19 | fveq2 6861 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 20 | 19 | eqeq2d 2741 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘𝑥))) |
| 21 | 12, 13, 17, 18, 20 | cbvrexfw 3281 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 22 | 21 | abbii 2797 | . 2 ⊢ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 23 | 11, 22 | eqtrdi 2781 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 “ cima 5644 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: funimass4f 32568 |
| Copyright terms: Public domain | W3C validator |