Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfimafnf | Structured version Visualization version GIF version |
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Thierry Arnoux, 24-Apr-2017.) |
Ref | Expression |
---|---|
dfimafnf.1 | ⊢ Ⅎ𝑥𝐴 |
dfimafnf.2 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
dfimafnf | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima2 5960 | . . 3 ⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦} | |
2 | ssel 3910 | . . . . . . 7 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑧 ∈ 𝐴 → 𝑧 ∈ dom 𝐹)) | |
3 | eqcom 2745 | . . . . . . . . 9 ⊢ ((𝐹‘𝑧) = 𝑦 ↔ 𝑦 = (𝐹‘𝑧)) | |
4 | funbrfvb 6806 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) = 𝑦 ↔ 𝑧𝐹𝑦)) | |
5 | 3, 4 | bitr3id 284 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)) |
6 | 5 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑧 ∈ dom 𝐹 → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦))) |
7 | 2, 6 | syl9r 78 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑧 ∈ 𝐴 → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)))) |
8 | 7 | imp31 417 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑧 ∈ 𝐴) → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)) |
9 | 8 | rexbidva 3224 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦)) |
10 | 9 | abbidv 2808 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦}) |
11 | 1, 10 | eqtr4id 2798 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)}) |
12 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
13 | dfimafnf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
14 | dfimafnf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
15 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
16 | 14, 15 | nffv 6766 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
17 | 16 | nfeq2 2923 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = (𝐹‘𝑧) |
18 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = (𝐹‘𝑥) | |
19 | fveq2 6756 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
20 | 19 | eqeq2d 2749 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘𝑥))) |
21 | 12, 13, 17, 18, 20 | cbvrexfw 3360 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
22 | 21 | abbii 2809 | . 2 ⊢ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
23 | 11, 22 | eqtrdi 2795 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 “ cima 5583 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: funimass4f 30873 |
Copyright terms: Public domain | W3C validator |