Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfimafnf | Structured version Visualization version GIF version |
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Thierry Arnoux, 24-Apr-2017.) |
Ref | Expression |
---|---|
dfimafnf.1 | ⊢ Ⅎ𝑥𝐴 |
dfimafnf.2 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
dfimafnf | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima2 5971 | . . 3 ⊢ (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦} | |
2 | ssel 3914 | . . . . . . 7 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑧 ∈ 𝐴 → 𝑧 ∈ dom 𝐹)) | |
3 | eqcom 2745 | . . . . . . . . 9 ⊢ ((𝐹‘𝑧) = 𝑦 ↔ 𝑦 = (𝐹‘𝑧)) | |
4 | funbrfvb 6824 | . . . . . . . . 9 ⊢ ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) → ((𝐹‘𝑧) = 𝑦 ↔ 𝑧𝐹𝑦)) | |
5 | 3, 4 | bitr3id 285 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)) |
6 | 5 | ex 413 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑧 ∈ dom 𝐹 → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦))) |
7 | 2, 6 | syl9r 78 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑧 ∈ 𝐴 → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)))) |
8 | 7 | imp31 418 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ 𝑧 ∈ 𝐴) → (𝑦 = (𝐹‘𝑧) ↔ 𝑧𝐹𝑦)) |
9 | 8 | rexbidva 3225 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) ↔ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦)) |
10 | 9 | abbidv 2807 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑧𝐹𝑦}) |
11 | 1, 10 | eqtr4id 2797 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)}) |
12 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
13 | dfimafnf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
14 | dfimafnf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
15 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
16 | 14, 15 | nffv 6784 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
17 | 16 | nfeq2 2924 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = (𝐹‘𝑧) |
18 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = (𝐹‘𝑥) | |
19 | fveq2 6774 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
20 | 19 | eqeq2d 2749 | . . . 4 ⊢ (𝑧 = 𝑥 → (𝑦 = (𝐹‘𝑧) ↔ 𝑦 = (𝐹‘𝑥))) |
21 | 12, 13, 17, 18, 20 | cbvrexfw 3370 | . . 3 ⊢ (∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
22 | 21 | abbii 2808 | . 2 ⊢ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = (𝐹‘𝑧)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
23 | 11, 22 | eqtrdi 2794 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∃wrex 3065 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 “ cima 5592 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: funimass4f 30972 |
Copyright terms: Public domain | W3C validator |