Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfimafnf Structured version   Visualization version   GIF version

Theorem dfimafnf 32560
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Thierry Arnoux, 24-Apr-2017.)
Hypotheses
Ref Expression
dfimafnf.1 𝑥𝐴
dfimafnf.2 𝑥𝐹
Assertion
Ref Expression
dfimafnf ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem dfimafnf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfima2 6033 . . 3 (𝐹𝐴) = {𝑦 ∣ ∃𝑧𝐴 𝑧𝐹𝑦}
2 ssel 3940 . . . . . . 7 (𝐴 ⊆ dom 𝐹 → (𝑧𝐴𝑧 ∈ dom 𝐹))
3 eqcom 2736 . . . . . . . . 9 ((𝐹𝑧) = 𝑦𝑦 = (𝐹𝑧))
4 funbrfvb 6914 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) = 𝑦𝑧𝐹𝑦))
53, 4bitr3id 285 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))
65ex 412 . . . . . . 7 (Fun 𝐹 → (𝑧 ∈ dom 𝐹 → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦)))
72, 6syl9r 78 . . . . . 6 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑧𝐴 → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))))
87imp31 417 . . . . 5 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑧𝐴) → (𝑦 = (𝐹𝑧) ↔ 𝑧𝐹𝑦))
98rexbidva 3155 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∃𝑧𝐴 𝑦 = (𝐹𝑧) ↔ ∃𝑧𝐴 𝑧𝐹𝑦))
109abbidv 2795 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑧𝐴 𝑧𝐹𝑦})
111, 10eqtr4id 2783 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)})
12 nfcv 2891 . . . 4 𝑧𝐴
13 dfimafnf.1 . . . 4 𝑥𝐴
14 dfimafnf.2 . . . . . 6 𝑥𝐹
15 nfcv 2891 . . . . . 6 𝑥𝑧
1614, 15nffv 6868 . . . . 5 𝑥(𝐹𝑧)
1716nfeq2 2909 . . . 4 𝑥 𝑦 = (𝐹𝑧)
18 nfv 1914 . . . 4 𝑧 𝑦 = (𝐹𝑥)
19 fveq2 6858 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
2019eqeq2d 2740 . . . 4 (𝑧 = 𝑥 → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹𝑥)))
2112, 13, 17, 18, 20cbvrexfw 3279 . . 3 (∃𝑧𝐴 𝑦 = (𝐹𝑧) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥))
2221abbii 2796 . 2 {𝑦 ∣ ∃𝑧𝐴 𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
2311, 22eqtrdi 2780 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wnfc 2876  wrex 3053  wss 3914   class class class wbr 5107  dom cdm 5638  cima 5641  Fun wfun 6505  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  funimass4f  32561
  Copyright terms: Public domain W3C validator