Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aciunf1lem Structured version   Visualization version   GIF version

Theorem aciunf1lem 32680
Description: Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
aciunf1lem.a 𝑗𝐴
aciunf1lem.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
aciunf1lem (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
Distinct variable groups:   𝑓,𝑗,𝑥   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥   𝑥,𝑗,𝜑   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑗)   𝐵(𝑗)   𝑉(𝑥,𝑓,𝑗)   𝑊(𝑥,𝑓)

Proof of Theorem aciunf1lem
Dummy variables 𝑘 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acunirnmpt.0 . . 3 (𝜑𝐴𝑉)
2 acunirnmpt.1 . . 3 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
3 aciunf1lem.a . . 3 𝑗𝐴
4 nfiu1 5050 . . 3 𝑗 𝑗𝐴 𝐵
5 nfcsb1v 3946 . . 3 𝑗(𝑔𝑥) / 𝑗𝐵
6 eqid 2740 . . 3 𝑗𝐴 𝐵 = 𝑗𝐴 𝐵
7 csbeq1a 3935 . . 3 (𝑗 = (𝑔𝑥) → 𝐵 = (𝑔𝑥) / 𝑗𝐵)
8 aciunf1lem.1 . . 3 ((𝜑𝑗𝐴) → 𝐵𝑊)
91, 2, 3, 4, 5, 6, 7, 8acunirnmpt2f 32679 . 2 (𝜑 → ∃𝑔(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
10 nfv 1913 . . . . . . . 8 𝑥𝜑
11 nfv 1913 . . . . . . . . 9 𝑥 𝑔: 𝑗𝐴 𝐵𝐴
12 nfra1 3290 . . . . . . . . 9 𝑥𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵
1311, 12nfan 1898 . . . . . . . 8 𝑥(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
1410, 13nfan 1898 . . . . . . 7 𝑥(𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
15 nfv 1913 . . . . . . . . . . 11 𝑗𝜑
16 nfcv 2908 . . . . . . . . . . . . 13 𝑗𝑔
1716, 4, 3nff 6743 . . . . . . . . . . . 12 𝑗 𝑔: 𝑗𝐴 𝐵𝐴
18 nfcv 2908 . . . . . . . . . . . . . 14 𝑗𝑥
1918, 5nfel 2923 . . . . . . . . . . . . 13 𝑗 𝑥(𝑔𝑥) / 𝑗𝐵
204, 19nfralw 3317 . . . . . . . . . . . 12 𝑗𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵
2117, 20nfan 1898 . . . . . . . . . . 11 𝑗(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
2215, 21nfan 1898 . . . . . . . . . 10 𝑗(𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
2318, 4nfel 2923 . . . . . . . . . 10 𝑗 𝑥 𝑗𝐴 𝐵
2422, 23nfan 1898 . . . . . . . . 9 𝑗((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵)
25 nfcv 2908 . . . . . . . . . 10 𝑗⟨(𝑔𝑥), 𝑥
26 nfiu1 5050 . . . . . . . . . 10 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
2725, 26nfel 2923 . . . . . . . . 9 𝑗⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵)
28 simplr 768 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
2928simpld 494 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑔: 𝑗𝐴 𝐵𝐴)
3029ad2antrr 725 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑔: 𝑗𝐴 𝐵𝐴)
31 simpllr 775 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑥 𝑗𝐴 𝐵)
3230, 31ffvelcdmd 7119 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → (𝑔𝑥) ∈ 𝐴)
33 fvex 6933 . . . . . . . . . . . . . . 15 (𝑔𝑥) ∈ V
3433snid 4684 . . . . . . . . . . . . . 14 (𝑔𝑥) ∈ {(𝑔𝑥)}
3534a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → (𝑔𝑥) ∈ {(𝑔𝑥)})
3628simprd 495 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
37 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑥 𝑗𝐴 𝐵)
38 rsp 3253 . . . . . . . . . . . . . . 15 (∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵 → (𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
3936, 37, 38sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑥(𝑔𝑥) / 𝑗𝐵)
4039ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑥(𝑔𝑥) / 𝑗𝐵)
4135, 40jca 511 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ((𝑔𝑥) ∈ {(𝑔𝑥)} ∧ 𝑥(𝑔𝑥) / 𝑗𝐵))
42 opelxp 5736 . . . . . . . . . . . 12 (⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵) ↔ ((𝑔𝑥) ∈ {(𝑔𝑥)} ∧ 𝑥(𝑔𝑥) / 𝑗𝐵))
4341, 42sylibr 234 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵))
44 sneq 4658 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → {𝑘} = {(𝑔𝑥)})
45 csbeq1 3924 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → 𝑘 / 𝑗𝐵 = (𝑔𝑥) / 𝑗𝐵)
4644, 45xpeq12d 5731 . . . . . . . . . . . . 13 (𝑘 = (𝑔𝑥) → ({𝑘} × 𝑘 / 𝑗𝐵) = ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵))
4746eleq2d 2830 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵) ↔ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵)))
4847rspcev 3635 . . . . . . . . . . 11 (((𝑔𝑥) ∈ 𝐴 ∧ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵)) → ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
4932, 43, 48syl2anc 583 . . . . . . . . . 10 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
50 eliun 5019 . . . . . . . . . . 11 (⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵))
51 nfcv 2908 . . . . . . . . . . . 12 𝑘𝐴
52 nfv 1913 . . . . . . . . . . . 12 𝑘⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵)
53 nfcv 2908 . . . . . . . . . . . . . 14 𝑗{𝑘}
54 nfcsb1v 3946 . . . . . . . . . . . . . 14 𝑗𝑘 / 𝑗𝐵
5553, 54nfxp 5733 . . . . . . . . . . . . 13 𝑗({𝑘} × 𝑘 / 𝑗𝐵)
5625, 55nfel 2923 . . . . . . . . . . . 12 𝑗⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵)
57 sneq 4658 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → {𝑗} = {𝑘})
58 csbeq1a 3935 . . . . . . . . . . . . . 14 (𝑗 = 𝑘𝐵 = 𝑘 / 𝑗𝐵)
5957, 58xpeq12d 5731 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ({𝑗} × 𝐵) = ({𝑘} × 𝑘 / 𝑗𝐵))
6059eleq2d 2830 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵) ↔ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵)))
613, 51, 52, 56, 60cbvrexfw 3311 . . . . . . . . . . 11 (∃𝑗𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
6250, 61bitri 275 . . . . . . . . . 10 (⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
6349, 62sylibr 234 . . . . . . . . 9 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
64 eliun 5019 . . . . . . . . . . 11 (𝑥 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑥𝐵)
6564biimpi 216 . . . . . . . . . 10 (𝑥 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑥𝐵)
6665adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑥𝐵)
6724, 27, 63, 66r19.29af2 3273 . . . . . . . 8 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
6867ex 412 . . . . . . 7 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵)))
6914, 68ralrimi 3263 . . . . . 6 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
70 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
7133, 70opth 5496 . . . . . . . . 9 (⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ ↔ ((𝑔𝑥) = (𝑔𝑦) ∧ 𝑥 = 𝑦))
7271simprbi 496 . . . . . . . 8 (⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)
7372rgen2w 3072 . . . . . . 7 𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)
7473a1i 11 . . . . . 6 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦))
7569, 74jca 511 . . . . 5 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)))
76 eqid 2740 . . . . . 6 (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
77 fveq2 6920 . . . . . . 7 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
78 id 22 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
7977, 78opeq12d 4905 . . . . . 6 (𝑥 = 𝑦 → ⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩)
8076, 79f1mpt 7298 . . . . 5 ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ↔ (∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)))
8175, 80sylibr 234 . . . 4 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵))
82 opex 5484 . . . . . . . . . 10 ⟨(𝑔𝑥), 𝑥⟩ ∈ V
8376fvmpt2 7040 . . . . . . . . . 10 ((𝑥 𝑗𝐴 𝐵 ∧ ⟨(𝑔𝑥), 𝑥⟩ ∈ V) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8482, 83mpan2 690 . . . . . . . . 9 (𝑥 𝑗𝐴 𝐵 → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8537, 84syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8685fveq2d 6924 . . . . . . 7 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = (2nd ‘⟨(𝑔𝑥), 𝑥⟩))
8733, 70op2nd 8039 . . . . . . 7 (2nd ‘⟨(𝑔𝑥), 𝑥⟩) = 𝑥
8886, 87eqtrdi 2796 . . . . . 6 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)
8988ex 412 . . . . 5 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
9014, 89ralrimi 3263 . . . 4 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)
9181, 90jca 511 . . 3 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
92 nfcv 2908 . . . . . . . . . . 11 𝑗𝑘
9392, 3nfel 2923 . . . . . . . . . 10 𝑗 𝑘𝐴
9415, 93nfan 1898 . . . . . . . . 9 𝑗(𝜑𝑘𝐴)
95 nfcv 2908 . . . . . . . . . 10 𝑗𝑊
9654, 95nfel 2923 . . . . . . . . 9 𝑗𝑘 / 𝑗𝐵𝑊
9794, 96nfim 1895 . . . . . . . 8 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)
98 eleq1w 2827 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9998anbi2d 629 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
10058eleq1d 2829 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐵𝑊𝑘 / 𝑗𝐵𝑊))
10199, 100imbi12d 344 . . . . . . . 8 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐵𝑊) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)))
10297, 101, 8chvarfv 2241 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)
103102ralrimiva 3152 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊)
104 nfcv 2908 . . . . . . . 8 𝑘𝐵
1053, 51, 104, 54, 58cbviunf 32578 . . . . . . 7 𝑗𝐴 𝐵 = 𝑘𝐴 𝑘 / 𝑗𝐵
106 iunexg 8004 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊) → 𝑘𝐴 𝑘 / 𝑗𝐵 ∈ V)
107105, 106eqeltrid 2848 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
1081, 103, 107syl2anc 583 . . . . 5 (𝜑 𝑗𝐴 𝐵 ∈ V)
109 mptexg 7258 . . . . 5 ( 𝑗𝐴 𝐵 ∈ V → (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) ∈ V)
110 f1eq1 6812 . . . . . . 7 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ↔ (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵)))
111 nfcv 2908 . . . . . . . . 9 𝑥𝑓
112 nfmpt1 5274 . . . . . . . . 9 𝑥(𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
113111, 112nfeq 2922 . . . . . . . 8 𝑥 𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
114 fveq1 6919 . . . . . . . . 9 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (𝑓𝑥) = ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥))
115114fveqeq2d 6928 . . . . . . . 8 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → ((2nd ‘(𝑓𝑥)) = 𝑥 ↔ (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
116113, 115ralbid 3279 . . . . . . 7 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥 ↔ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
117110, 116anbi12d 631 . . . . . 6 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥) ↔ ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)))
118117spcegv 3610 . . . . 5 ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) ∈ V → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
119108, 109, 1183syl 18 . . . 4 (𝜑 → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
120119adantr 480 . . 3 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
12191, 120mpd 15 . 2 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
1229, 121exlimddv 1934 1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wnfc 2893  wne 2946  wral 3067  wrex 3076  Vcvv 3488  csb 3921  c0 4352  {csn 4648  cop 4654   ciun 5015  cmpt 5249   × cxp 5698  wf 6569  1-1wf1 6570  cfv 6573  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-en 9004  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185
This theorem is referenced by:  aciunf1  32681
  Copyright terms: Public domain W3C validator