Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aciunf1lem Structured version   Visualization version   GIF version

Theorem aciunf1lem 30999
Description: Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
aciunf1lem.a 𝑗𝐴
aciunf1lem.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
aciunf1lem (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
Distinct variable groups:   𝑓,𝑗,𝑥   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥   𝑥,𝑗,𝜑   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑗)   𝐵(𝑗)   𝑉(𝑥,𝑓,𝑗)   𝑊(𝑥,𝑓)

Proof of Theorem aciunf1lem
Dummy variables 𝑘 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acunirnmpt.0 . . 3 (𝜑𝐴𝑉)
2 acunirnmpt.1 . . 3 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
3 aciunf1lem.a . . 3 𝑗𝐴
4 nfiu1 4958 . . 3 𝑗 𝑗𝐴 𝐵
5 nfcsb1v 3857 . . 3 𝑗(𝑔𝑥) / 𝑗𝐵
6 eqid 2738 . . 3 𝑗𝐴 𝐵 = 𝑗𝐴 𝐵
7 csbeq1a 3846 . . 3 (𝑗 = (𝑔𝑥) → 𝐵 = (𝑔𝑥) / 𝑗𝐵)
8 aciunf1lem.1 . . 3 ((𝜑𝑗𝐴) → 𝐵𝑊)
91, 2, 3, 4, 5, 6, 7, 8acunirnmpt2f 30998 . 2 (𝜑 → ∃𝑔(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
10 nfv 1917 . . . . . . . 8 𝑥𝜑
11 nfv 1917 . . . . . . . . 9 𝑥 𝑔: 𝑗𝐴 𝐵𝐴
12 nfra1 3144 . . . . . . . . 9 𝑥𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵
1311, 12nfan 1902 . . . . . . . 8 𝑥(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
1410, 13nfan 1902 . . . . . . 7 𝑥(𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
15 nfv 1917 . . . . . . . . . . 11 𝑗𝜑
16 nfcv 2907 . . . . . . . . . . . . 13 𝑗𝑔
1716, 4, 3nff 6596 . . . . . . . . . . . 12 𝑗 𝑔: 𝑗𝐴 𝐵𝐴
18 nfcv 2907 . . . . . . . . . . . . . 14 𝑗𝑥
1918, 5nfel 2921 . . . . . . . . . . . . 13 𝑗 𝑥(𝑔𝑥) / 𝑗𝐵
204, 19nfralw 3151 . . . . . . . . . . . 12 𝑗𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵
2117, 20nfan 1902 . . . . . . . . . . 11 𝑗(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
2215, 21nfan 1902 . . . . . . . . . 10 𝑗(𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
2318, 4nfel 2921 . . . . . . . . . 10 𝑗 𝑥 𝑗𝐴 𝐵
2422, 23nfan 1902 . . . . . . . . 9 𝑗((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵)
25 nfcv 2907 . . . . . . . . . 10 𝑗⟨(𝑔𝑥), 𝑥
26 nfiu1 4958 . . . . . . . . . 10 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
2725, 26nfel 2921 . . . . . . . . 9 𝑗⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵)
28 simplr 766 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
2928simpld 495 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑔: 𝑗𝐴 𝐵𝐴)
3029ad2antrr 723 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑔: 𝑗𝐴 𝐵𝐴)
31 simpllr 773 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑥 𝑗𝐴 𝐵)
3230, 31ffvelrnd 6962 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → (𝑔𝑥) ∈ 𝐴)
33 fvex 6787 . . . . . . . . . . . . . . 15 (𝑔𝑥) ∈ V
3433snid 4597 . . . . . . . . . . . . . 14 (𝑔𝑥) ∈ {(𝑔𝑥)}
3534a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → (𝑔𝑥) ∈ {(𝑔𝑥)})
3628simprd 496 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
37 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑥 𝑗𝐴 𝐵)
38 rsp 3131 . . . . . . . . . . . . . . 15 (∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵 → (𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
3936, 37, 38sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑥(𝑔𝑥) / 𝑗𝐵)
4039ad2antrr 723 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑥(𝑔𝑥) / 𝑗𝐵)
4135, 40jca 512 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ((𝑔𝑥) ∈ {(𝑔𝑥)} ∧ 𝑥(𝑔𝑥) / 𝑗𝐵))
42 opelxp 5625 . . . . . . . . . . . 12 (⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵) ↔ ((𝑔𝑥) ∈ {(𝑔𝑥)} ∧ 𝑥(𝑔𝑥) / 𝑗𝐵))
4341, 42sylibr 233 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵))
44 sneq 4571 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → {𝑘} = {(𝑔𝑥)})
45 csbeq1 3835 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → 𝑘 / 𝑗𝐵 = (𝑔𝑥) / 𝑗𝐵)
4644, 45xpeq12d 5620 . . . . . . . . . . . . 13 (𝑘 = (𝑔𝑥) → ({𝑘} × 𝑘 / 𝑗𝐵) = ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵))
4746eleq2d 2824 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵) ↔ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵)))
4847rspcev 3561 . . . . . . . . . . 11 (((𝑔𝑥) ∈ 𝐴 ∧ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵)) → ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
4932, 43, 48syl2anc 584 . . . . . . . . . 10 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
50 eliun 4928 . . . . . . . . . . 11 (⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵))
51 nfcv 2907 . . . . . . . . . . . 12 𝑘𝐴
52 nfv 1917 . . . . . . . . . . . 12 𝑘⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵)
53 nfcv 2907 . . . . . . . . . . . . . 14 𝑗{𝑘}
54 nfcsb1v 3857 . . . . . . . . . . . . . 14 𝑗𝑘 / 𝑗𝐵
5553, 54nfxp 5622 . . . . . . . . . . . . 13 𝑗({𝑘} × 𝑘 / 𝑗𝐵)
5625, 55nfel 2921 . . . . . . . . . . . 12 𝑗⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵)
57 sneq 4571 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → {𝑗} = {𝑘})
58 csbeq1a 3846 . . . . . . . . . . . . . 14 (𝑗 = 𝑘𝐵 = 𝑘 / 𝑗𝐵)
5957, 58xpeq12d 5620 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ({𝑗} × 𝐵) = ({𝑘} × 𝑘 / 𝑗𝐵))
6059eleq2d 2824 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵) ↔ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵)))
613, 51, 52, 56, 60cbvrexfw 3370 . . . . . . . . . . 11 (∃𝑗𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
6250, 61bitri 274 . . . . . . . . . 10 (⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
6349, 62sylibr 233 . . . . . . . . 9 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
64 eliun 4928 . . . . . . . . . . 11 (𝑥 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑥𝐵)
6564biimpi 215 . . . . . . . . . 10 (𝑥 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑥𝐵)
6665adantl 482 . . . . . . . . 9 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑥𝐵)
6724, 27, 63, 66r19.29af2 3261 . . . . . . . 8 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
6867ex 413 . . . . . . 7 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵)))
6914, 68ralrimi 3141 . . . . . 6 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
70 vex 3436 . . . . . . . . . 10 𝑥 ∈ V
7133, 70opth 5391 . . . . . . . . 9 (⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ ↔ ((𝑔𝑥) = (𝑔𝑦) ∧ 𝑥 = 𝑦))
7271simprbi 497 . . . . . . . 8 (⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)
7372rgen2w 3077 . . . . . . 7 𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)
7473a1i 11 . . . . . 6 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦))
7569, 74jca 512 . . . . 5 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)))
76 eqid 2738 . . . . . 6 (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
77 fveq2 6774 . . . . . . 7 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
78 id 22 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
7977, 78opeq12d 4812 . . . . . 6 (𝑥 = 𝑦 → ⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩)
8076, 79f1mpt 7134 . . . . 5 ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ↔ (∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)))
8175, 80sylibr 233 . . . 4 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵))
82 opex 5379 . . . . . . . . . 10 ⟨(𝑔𝑥), 𝑥⟩ ∈ V
8376fvmpt2 6886 . . . . . . . . . 10 ((𝑥 𝑗𝐴 𝐵 ∧ ⟨(𝑔𝑥), 𝑥⟩ ∈ V) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8482, 83mpan2 688 . . . . . . . . 9 (𝑥 𝑗𝐴 𝐵 → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8537, 84syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8685fveq2d 6778 . . . . . . 7 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = (2nd ‘⟨(𝑔𝑥), 𝑥⟩))
8733, 70op2nd 7840 . . . . . . 7 (2nd ‘⟨(𝑔𝑥), 𝑥⟩) = 𝑥
8886, 87eqtrdi 2794 . . . . . 6 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)
8988ex 413 . . . . 5 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
9014, 89ralrimi 3141 . . . 4 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)
9181, 90jca 512 . . 3 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
92 nfcv 2907 . . . . . . . . . . 11 𝑗𝑘
9392, 3nfel 2921 . . . . . . . . . 10 𝑗 𝑘𝐴
9415, 93nfan 1902 . . . . . . . . 9 𝑗(𝜑𝑘𝐴)
95 nfcv 2907 . . . . . . . . . 10 𝑗𝑊
9654, 95nfel 2921 . . . . . . . . 9 𝑗𝑘 / 𝑗𝐵𝑊
9794, 96nfim 1899 . . . . . . . 8 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)
98 eleq1w 2821 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9998anbi2d 629 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
10058eleq1d 2823 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐵𝑊𝑘 / 𝑗𝐵𝑊))
10199, 100imbi12d 345 . . . . . . . 8 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐵𝑊) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)))
10297, 101, 8chvarfv 2233 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)
103102ralrimiva 3103 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊)
104 nfcv 2907 . . . . . . . 8 𝑘𝐵
1053, 51, 104, 54, 58cbviunf 30895 . . . . . . 7 𝑗𝐴 𝐵 = 𝑘𝐴 𝑘 / 𝑗𝐵
106 iunexg 7806 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊) → 𝑘𝐴 𝑘 / 𝑗𝐵 ∈ V)
107105, 106eqeltrid 2843 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
1081, 103, 107syl2anc 584 . . . . 5 (𝜑 𝑗𝐴 𝐵 ∈ V)
109 mptexg 7097 . . . . 5 ( 𝑗𝐴 𝐵 ∈ V → (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) ∈ V)
110 f1eq1 6665 . . . . . . 7 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ↔ (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵)))
111 nfcv 2907 . . . . . . . . 9 𝑥𝑓
112 nfmpt1 5182 . . . . . . . . 9 𝑥(𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
113111, 112nfeq 2920 . . . . . . . 8 𝑥 𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
114 fveq1 6773 . . . . . . . . 9 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (𝑓𝑥) = ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥))
115114fveqeq2d 6782 . . . . . . . 8 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → ((2nd ‘(𝑓𝑥)) = 𝑥 ↔ (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
116113, 115ralbid 3161 . . . . . . 7 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥 ↔ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
117110, 116anbi12d 631 . . . . . 6 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥) ↔ ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)))
118117spcegv 3536 . . . . 5 ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) ∈ V → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
119108, 109, 1183syl 18 . . . 4 (𝜑 → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
120119adantr 481 . . 3 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
12191, 120mpd 15 . 2 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
1229, 121exlimddv 1938 1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wnfc 2887  wne 2943  wral 3064  wrex 3065  Vcvv 3432  csb 3832  c0 4256  {csn 4561  cop 4567   ciun 4924  cmpt 5157   × cxp 5587  wf 6429  1-1wf1 6430  cfv 6433  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-en 8734  df-r1 9522  df-rank 9523  df-card 9697  df-ac 9872
This theorem is referenced by:  aciunf1  31000
  Copyright terms: Public domain W3C validator