Step | Hyp | Ref
| Expression |
1 | | acunirnmpt.0 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | | acunirnmpt.1 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ≠ ∅) |
3 | | aciunf1lem.a |
. . 3
⊢
Ⅎ𝑗𝐴 |
4 | | nfiu1 4958 |
. . 3
⊢
Ⅎ𝑗∪ 𝑗 ∈ 𝐴 𝐵 |
5 | | nfcsb1v 3857 |
. . 3
⊢
Ⅎ𝑗⦋(𝑔‘𝑥) / 𝑗⦌𝐵 |
6 | | eqid 2738 |
. . 3
⊢ ∪ 𝑗 ∈ 𝐴 𝐵 = ∪ 𝑗 ∈ 𝐴 𝐵 |
7 | | csbeq1a 3846 |
. . 3
⊢ (𝑗 = (𝑔‘𝑥) → 𝐵 = ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) |
8 | | aciunf1lem.1 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | acunirnmpt2f 30998 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
10 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜑 |
11 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 |
12 | | nfra1 3144 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵 |
13 | 11, 12 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) |
14 | 10, 13 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑥(𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
15 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗𝜑 |
16 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝑔 |
17 | 16, 4, 3 | nff 6596 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 |
18 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝑥 |
19 | 18, 5 | nfel 2921 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵 |
20 | 4, 19 | nfralw 3151 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵 |
21 | 17, 20 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗(𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) |
22 | 15, 21 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
23 | 18, 4 | nfel 2921 |
. . . . . . . . . 10
⊢
Ⅎ𝑗 𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 |
24 | 22, 23 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑗((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) |
25 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑗〈(𝑔‘𝑥), 𝑥〉 |
26 | | nfiu1 4958 |
. . . . . . . . . 10
⊢
Ⅎ𝑗∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
27 | 25, 26 | nfel 2921 |
. . . . . . . . 9
⊢
Ⅎ𝑗〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
28 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
29 | 28 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → 𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴) |
30 | 29 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴) |
31 | | simpllr 773 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) |
32 | 30, 31 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝑔‘𝑥) ∈ 𝐴) |
33 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝑔‘𝑥) ∈ V |
34 | 33 | snid 4597 |
. . . . . . . . . . . . . 14
⊢ (𝑔‘𝑥) ∈ {(𝑔‘𝑥)} |
35 | 34 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → (𝑔‘𝑥) ∈ {(𝑔‘𝑥)}) |
36 | 28 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) |
37 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) |
38 | | rsp 3131 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
∪ 𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵 → (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 → 𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
39 | 36, 37, 38 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → 𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) |
40 | 39 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) |
41 | 35, 40 | jca 512 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → ((𝑔‘𝑥) ∈ {(𝑔‘𝑥)} ∧ 𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
42 | | opelxp 5625 |
. . . . . . . . . . . 12
⊢
(〈(𝑔‘𝑥), 𝑥〉 ∈ ({(𝑔‘𝑥)} × ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) ↔ ((𝑔‘𝑥) ∈ {(𝑔‘𝑥)} ∧ 𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
43 | 41, 42 | sylibr 233 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 〈(𝑔‘𝑥), 𝑥〉 ∈ ({(𝑔‘𝑥)} × ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
44 | | sneq 4571 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑔‘𝑥) → {𝑘} = {(𝑔‘𝑥)}) |
45 | | csbeq1 3835 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑔‘𝑥) → ⦋𝑘 / 𝑗⦌𝐵 = ⦋(𝑔‘𝑥) / 𝑗⦌𝐵) |
46 | 44, 45 | xpeq12d 5620 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑔‘𝑥) → ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵) = ({(𝑔‘𝑥)} × ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) |
47 | 46 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑔‘𝑥) → (〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵) ↔ 〈(𝑔‘𝑥), 𝑥〉 ∈ ({(𝑔‘𝑥)} × ⦋(𝑔‘𝑥) / 𝑗⦌𝐵))) |
48 | 47 | rspcev 3561 |
. . . . . . . . . . 11
⊢ (((𝑔‘𝑥) ∈ 𝐴 ∧ 〈(𝑔‘𝑥), 𝑥〉 ∈ ({(𝑔‘𝑥)} × ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → ∃𝑘 ∈ 𝐴 〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵)) |
49 | 32, 43, 48 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → ∃𝑘 ∈ 𝐴 〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵)) |
50 | | eliun 4928 |
. . . . . . . . . . 11
⊢
(〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗 ∈ 𝐴 〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑗} × 𝐵)) |
51 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘𝐴 |
52 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑗} × 𝐵) |
53 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗{𝑘} |
54 | | nfcsb1v 3857 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐵 |
55 | 53, 54 | nfxp 5622 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗({𝑘} × ⦋𝑘 / 𝑗⦌𝐵) |
56 | 25, 55 | nfel 2921 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵) |
57 | | sneq 4571 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → {𝑗} = {𝑘}) |
58 | | csbeq1a 3846 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → 𝐵 = ⦋𝑘 / 𝑗⦌𝐵) |
59 | 57, 58 | xpeq12d 5620 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → ({𝑗} × 𝐵) = ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵)) |
60 | 59 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑗} × 𝐵) ↔ 〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵))) |
61 | 3, 51, 52, 56, 60 | cbvrexfw 3370 |
. . . . . . . . . . 11
⊢
(∃𝑗 ∈
𝐴 〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘 ∈ 𝐴 〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵)) |
62 | 50, 61 | bitri 274 |
. . . . . . . . . 10
⊢
(〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ ∃𝑘 ∈ 𝐴 〈(𝑔‘𝑥), 𝑥〉 ∈ ({𝑘} × ⦋𝑘 / 𝑗⦌𝐵)) |
63 | 49, 62 | sylibr 233 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) ∧ 𝑗 ∈ 𝐴) ∧ 𝑥 ∈ 𝐵) → 〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
64 | | eliun 4928 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↔ ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵) |
65 | 64 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 → ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵) |
66 | 65 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → ∃𝑗 ∈ 𝐴 𝑥 ∈ 𝐵) |
67 | 24, 27, 63, 66 | r19.29af2 3261 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → 〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
68 | 67 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 → 〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵))) |
69 | 14, 68 | ralrimi 3141 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
70 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
71 | 33, 70 | opth 5391 |
. . . . . . . . 9
⊢
(〈(𝑔‘𝑥), 𝑥〉 = 〈(𝑔‘𝑦), 𝑦〉 ↔ ((𝑔‘𝑥) = (𝑔‘𝑦) ∧ 𝑥 = 𝑦)) |
72 | 71 | simprbi 497 |
. . . . . . . 8
⊢
(〈(𝑔‘𝑥), 𝑥〉 = 〈(𝑔‘𝑦), 𝑦〉 → 𝑥 = 𝑦) |
73 | 72 | rgen2w 3077 |
. . . . . . 7
⊢
∀𝑥 ∈
∪ 𝑗 ∈ 𝐴 𝐵∀𝑦 ∈ ∪
𝑗 ∈ 𝐴 𝐵(〈(𝑔‘𝑥), 𝑥〉 = 〈(𝑔‘𝑦), 𝑦〉 → 𝑥 = 𝑦) |
74 | 73 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵∀𝑦 ∈ ∪
𝑗 ∈ 𝐴 𝐵(〈(𝑔‘𝑥), 𝑥〉 = 〈(𝑔‘𝑦), 𝑦〉 → 𝑥 = 𝑦)) |
75 | 69, 74 | jca 512 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → (∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵∀𝑦 ∈ ∪
𝑗 ∈ 𝐴 𝐵(〈(𝑔‘𝑥), 𝑥〉 = 〈(𝑔‘𝑦), 𝑦〉 → 𝑥 = 𝑦))) |
76 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) = (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) |
77 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑔‘𝑥) = (𝑔‘𝑦)) |
78 | | id 22 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
79 | 77, 78 | opeq12d 4812 |
. . . . . 6
⊢ (𝑥 = 𝑦 → 〈(𝑔‘𝑥), 𝑥〉 = 〈(𝑔‘𝑦), 𝑦〉) |
80 | 76, 79 | f1mpt 7134 |
. . . . 5
⊢ ((𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ (∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵〈(𝑔‘𝑥), 𝑥〉 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵∀𝑦 ∈ ∪
𝑗 ∈ 𝐴 𝐵(〈(𝑔‘𝑥), 𝑥〉 = 〈(𝑔‘𝑦), 𝑦〉 → 𝑥 = 𝑦))) |
81 | 75, 80 | sylibr 233 |
. . . 4
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
82 | | opex 5379 |
. . . . . . . . . 10
⊢
〈(𝑔‘𝑥), 𝑥〉 ∈ V |
83 | 76 | fvmpt2 6886 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ∧ 〈(𝑔‘𝑥), 𝑥〉 ∈ V) → ((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥) = 〈(𝑔‘𝑥), 𝑥〉) |
84 | 82, 83 | mpan2 688 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 → ((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥) = 〈(𝑔‘𝑥), 𝑥〉) |
85 | 37, 84 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → ((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥) = 〈(𝑔‘𝑥), 𝑥〉) |
86 | 85 | fveq2d 6778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → (2nd ‘((𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = (2nd ‘〈(𝑔‘𝑥), 𝑥〉)) |
87 | 33, 70 | op2nd 7840 |
. . . . . . 7
⊢
(2nd ‘〈(𝑔‘𝑥), 𝑥〉) = 𝑥 |
88 | 86, 87 | eqtrdi 2794 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) ∧ 𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵) → (2nd ‘((𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥) |
89 | 88 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 → (2nd ‘((𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥)) |
90 | 14, 89 | ralrimi 3141 |
. . . 4
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥) |
91 | 81, 90 | jca 512 |
. . 3
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → ((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥)) |
92 | | nfcv 2907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗𝑘 |
93 | 92, 3 | nfel 2921 |
. . . . . . . . . 10
⊢
Ⅎ𝑗 𝑘 ∈ 𝐴 |
94 | 15, 93 | nfan 1902 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝜑 ∧ 𝑘 ∈ 𝐴) |
95 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝑊 |
96 | 54, 95 | nfel 2921 |
. . . . . . . . 9
⊢
Ⅎ𝑗⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊 |
97 | 94, 96 | nfim 1899 |
. . . . . . . 8
⊢
Ⅎ𝑗((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊) |
98 | | eleq1w 2821 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
99 | 98 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝐴) ↔ (𝜑 ∧ 𝑘 ∈ 𝐴))) |
100 | 58 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝐵 ∈ 𝑊 ↔ ⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊)) |
101 | 99, 100 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) ↔ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊))) |
102 | 97, 101, 8 | chvarfv 2233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊) |
103 | 102 | ralrimiva 3103 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊) |
104 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑘𝐵 |
105 | 3, 51, 104, 54, 58 | cbviunf 30895 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ 𝐴 ⦋𝑘 / 𝑗⦌𝐵 |
106 | | iunexg 7806 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 ⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊) → ∪
𝑘 ∈ 𝐴 ⦋𝑘 / 𝑗⦌𝐵 ∈ V) |
107 | 105, 106 | eqeltrid 2843 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 ⦋𝑘 / 𝑗⦌𝐵 ∈ 𝑊) → ∪
𝑗 ∈ 𝐴 𝐵 ∈ V) |
108 | 1, 103, 107 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ∪ 𝑗 ∈ 𝐴 𝐵 ∈ V) |
109 | | mptexg 7097 |
. . . . 5
⊢ (∪ 𝑗 ∈ 𝐴 𝐵 ∈ V → (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) ∈ V) |
110 | | f1eq1 6665 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) → (𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵))) |
111 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑓 |
112 | | nfmpt1 5182 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) |
113 | 111, 112 | nfeq 2920 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑓 = (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) |
114 | | fveq1 6773 |
. . . . . . . . 9
⊢ (𝑓 = (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) → (𝑓‘𝑥) = ((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) |
115 | 114 | fveqeq2d 6782 |
. . . . . . . 8
⊢ (𝑓 = (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) → ((2nd ‘(𝑓‘𝑥)) = 𝑥 ↔ (2nd ‘((𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥)) |
116 | 113, 115 | ralbid 3161 |
. . . . . . 7
⊢ (𝑓 = (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) → (∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥 ↔ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥)) |
117 | 110, 116 | anbi12d 631 |
. . . . . 6
⊢ (𝑓 = (𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) → ((𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥) ↔ ((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥))) |
118 | 117 | spcegv 3536 |
. . . . 5
⊢ ((𝑥 ∈ ∪ 𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉) ∈ V → (((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥) → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥))) |
119 | 108, 109,
118 | 3syl 18 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥) → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥))) |
120 | 119 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → (((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉):∪
𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘((𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵 ↦ 〈(𝑔‘𝑥), 𝑥〉)‘𝑥)) = 𝑥) → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥))) |
121 | 91, 120 | mpd 15 |
. 2
⊢ ((𝜑 ∧ (𝑔:∪ 𝑗 ∈ 𝐴 𝐵⟶𝐴 ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵𝑥 ∈ ⦋(𝑔‘𝑥) / 𝑗⦌𝐵)) → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥)) |
122 | 9, 121 | exlimddv 1938 |
1
⊢ (𝜑 → ∃𝑓(𝑓:∪ 𝑗 ∈ 𝐴 𝐵–1-1→∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 ∈ ∪
𝑗 ∈ 𝐴 𝐵(2nd ‘(𝑓‘𝑥)) = 𝑥)) |