Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aciunf1lem Structured version   Visualization version   GIF version

Theorem aciunf1lem 32678
Description: Choice in an index union. (Contributed by Thierry Arnoux, 8-Nov-2019.)
Hypotheses
Ref Expression
acunirnmpt.0 (𝜑𝐴𝑉)
acunirnmpt.1 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
aciunf1lem.a 𝑗𝐴
aciunf1lem.1 ((𝜑𝑗𝐴) → 𝐵𝑊)
Assertion
Ref Expression
aciunf1lem (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
Distinct variable groups:   𝑓,𝑗,𝑥   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥   𝑥,𝑗,𝜑   𝑗,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑗)   𝐵(𝑗)   𝑉(𝑥,𝑓,𝑗)   𝑊(𝑥,𝑓)

Proof of Theorem aciunf1lem
Dummy variables 𝑘 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acunirnmpt.0 . . 3 (𝜑𝐴𝑉)
2 acunirnmpt.1 . . 3 ((𝜑𝑗𝐴) → 𝐵 ≠ ∅)
3 aciunf1lem.a . . 3 𝑗𝐴
4 nfiu1 5031 . . 3 𝑗 𝑗𝐴 𝐵
5 nfcsb1v 3932 . . 3 𝑗(𝑔𝑥) / 𝑗𝐵
6 eqid 2734 . . 3 𝑗𝐴 𝐵 = 𝑗𝐴 𝐵
7 csbeq1a 3921 . . 3 (𝑗 = (𝑔𝑥) → 𝐵 = (𝑔𝑥) / 𝑗𝐵)
8 aciunf1lem.1 . . 3 ((𝜑𝑗𝐴) → 𝐵𝑊)
91, 2, 3, 4, 5, 6, 7, 8acunirnmpt2f 32677 . 2 (𝜑 → ∃𝑔(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
10 nfv 1911 . . . . . . . 8 𝑥𝜑
11 nfv 1911 . . . . . . . . 9 𝑥 𝑔: 𝑗𝐴 𝐵𝐴
12 nfra1 3281 . . . . . . . . 9 𝑥𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵
1311, 12nfan 1896 . . . . . . . 8 𝑥(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
1410, 13nfan 1896 . . . . . . 7 𝑥(𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
15 nfv 1911 . . . . . . . . . . 11 𝑗𝜑
16 nfcv 2902 . . . . . . . . . . . . 13 𝑗𝑔
1716, 4, 3nff 6732 . . . . . . . . . . . 12 𝑗 𝑔: 𝑗𝐴 𝐵𝐴
18 nfcv 2902 . . . . . . . . . . . . . 14 𝑗𝑥
1918, 5nfel 2917 . . . . . . . . . . . . 13 𝑗 𝑥(𝑔𝑥) / 𝑗𝐵
204, 19nfralw 3308 . . . . . . . . . . . 12 𝑗𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵
2117, 20nfan 1896 . . . . . . . . . . 11 𝑗(𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
2215, 21nfan 1896 . . . . . . . . . 10 𝑗(𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
2318, 4nfel 2917 . . . . . . . . . 10 𝑗 𝑥 𝑗𝐴 𝐵
2422, 23nfan 1896 . . . . . . . . 9 𝑗((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵)
25 nfcv 2902 . . . . . . . . . 10 𝑗⟨(𝑔𝑥), 𝑥
26 nfiu1 5031 . . . . . . . . . 10 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
2725, 26nfel 2917 . . . . . . . . 9 𝑗⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵)
28 simplr 769 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
2928simpld 494 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑔: 𝑗𝐴 𝐵𝐴)
3029ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑔: 𝑗𝐴 𝐵𝐴)
31 simpllr 776 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑥 𝑗𝐴 𝐵)
3230, 31ffvelcdmd 7104 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → (𝑔𝑥) ∈ 𝐴)
33 fvex 6919 . . . . . . . . . . . . . . 15 (𝑔𝑥) ∈ V
3433snid 4666 . . . . . . . . . . . . . 14 (𝑔𝑥) ∈ {(𝑔𝑥)}
3534a1i 11 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → (𝑔𝑥) ∈ {(𝑔𝑥)})
3628simprd 495 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)
37 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑥 𝑗𝐴 𝐵)
38 rsp 3244 . . . . . . . . . . . . . . 15 (∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵 → (𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵))
3936, 37, 38sylc 65 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → 𝑥(𝑔𝑥) / 𝑗𝐵)
4039ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → 𝑥(𝑔𝑥) / 𝑗𝐵)
4135, 40jca 511 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ((𝑔𝑥) ∈ {(𝑔𝑥)} ∧ 𝑥(𝑔𝑥) / 𝑗𝐵))
42 opelxp 5724 . . . . . . . . . . . 12 (⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵) ↔ ((𝑔𝑥) ∈ {(𝑔𝑥)} ∧ 𝑥(𝑔𝑥) / 𝑗𝐵))
4341, 42sylibr 234 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵))
44 sneq 4640 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → {𝑘} = {(𝑔𝑥)})
45 csbeq1 3910 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → 𝑘 / 𝑗𝐵 = (𝑔𝑥) / 𝑗𝐵)
4644, 45xpeq12d 5719 . . . . . . . . . . . . 13 (𝑘 = (𝑔𝑥) → ({𝑘} × 𝑘 / 𝑗𝐵) = ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵))
4746eleq2d 2824 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵) ↔ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵)))
4847rspcev 3621 . . . . . . . . . . 11 (((𝑔𝑥) ∈ 𝐴 ∧ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({(𝑔𝑥)} × (𝑔𝑥) / 𝑗𝐵)) → ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
4932, 43, 48syl2anc 584 . . . . . . . . . 10 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
50 eliun 4999 . . . . . . . . . . 11 (⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵))
51 nfcv 2902 . . . . . . . . . . . 12 𝑘𝐴
52 nfv 1911 . . . . . . . . . . . 12 𝑘⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵)
53 nfcv 2902 . . . . . . . . . . . . . 14 𝑗{𝑘}
54 nfcsb1v 3932 . . . . . . . . . . . . . 14 𝑗𝑘 / 𝑗𝐵
5553, 54nfxp 5721 . . . . . . . . . . . . 13 𝑗({𝑘} × 𝑘 / 𝑗𝐵)
5625, 55nfel 2917 . . . . . . . . . . . 12 𝑗⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵)
57 sneq 4640 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → {𝑗} = {𝑘})
58 csbeq1a 3921 . . . . . . . . . . . . . 14 (𝑗 = 𝑘𝐵 = 𝑘 / 𝑗𝐵)
5957, 58xpeq12d 5719 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ({𝑗} × 𝐵) = ({𝑘} × 𝑘 / 𝑗𝐵))
6059eleq2d 2824 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵) ↔ ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵)))
613, 51, 52, 56, 60cbvrexfw 3302 . . . . . . . . . . 11 (∃𝑗𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
6250, 61bitri 275 . . . . . . . . . 10 (⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑘𝐴 ⟨(𝑔𝑥), 𝑥⟩ ∈ ({𝑘} × 𝑘 / 𝑗𝐵))
6349, 62sylibr 234 . . . . . . . . 9 (((((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) ∧ 𝑗𝐴) ∧ 𝑥𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
64 eliun 4999 . . . . . . . . . . 11 (𝑥 𝑗𝐴 𝐵 ↔ ∃𝑗𝐴 𝑥𝐵)
6564biimpi 216 . . . . . . . . . 10 (𝑥 𝑗𝐴 𝐵 → ∃𝑗𝐴 𝑥𝐵)
6665adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ∃𝑗𝐴 𝑥𝐵)
6724, 27, 63, 66r19.29af2 3264 . . . . . . . 8 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
6867ex 412 . . . . . . 7 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 → ⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵)))
6914, 68ralrimi 3254 . . . . . 6 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵))
70 vex 3481 . . . . . . . . . 10 𝑥 ∈ V
7133, 70opth 5486 . . . . . . . . 9 (⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ ↔ ((𝑔𝑥) = (𝑔𝑦) ∧ 𝑥 = 𝑦))
7271simprbi 496 . . . . . . . 8 (⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)
7372rgen2w 3063 . . . . . . 7 𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)
7473a1i 11 . . . . . 6 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦))
7569, 74jca 511 . . . . 5 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)))
76 eqid 2734 . . . . . 6 (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
77 fveq2 6906 . . . . . . 7 (𝑥 = 𝑦 → (𝑔𝑥) = (𝑔𝑦))
78 id 22 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
7977, 78opeq12d 4885 . . . . . 6 (𝑥 = 𝑦 → ⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩)
8076, 79f1mpt 7280 . . . . 5 ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ↔ (∀𝑥 𝑗𝐴 𝐵⟨(𝑔𝑥), 𝑥⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵𝑦 𝑗𝐴 𝐵(⟨(𝑔𝑥), 𝑥⟩ = ⟨(𝑔𝑦), 𝑦⟩ → 𝑥 = 𝑦)))
8175, 80sylibr 234 . . . 4 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵))
82 opex 5474 . . . . . . . . . 10 ⟨(𝑔𝑥), 𝑥⟩ ∈ V
8376fvmpt2 7026 . . . . . . . . . 10 ((𝑥 𝑗𝐴 𝐵 ∧ ⟨(𝑔𝑥), 𝑥⟩ ∈ V) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8482, 83mpan2 691 . . . . . . . . 9 (𝑥 𝑗𝐴 𝐵 → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8537, 84syl 17 . . . . . . . 8 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥) = ⟨(𝑔𝑥), 𝑥⟩)
8685fveq2d 6910 . . . . . . 7 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = (2nd ‘⟨(𝑔𝑥), 𝑥⟩))
8733, 70op2nd 8021 . . . . . . 7 (2nd ‘⟨(𝑔𝑥), 𝑥⟩) = 𝑥
8886, 87eqtrdi 2790 . . . . . 6 (((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) ∧ 𝑥 𝑗𝐴 𝐵) → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)
8988ex 412 . . . . 5 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (𝑥 𝑗𝐴 𝐵 → (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
9014, 89ralrimi 3254 . . . 4 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)
9181, 90jca 511 . . 3 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
92 nfcv 2902 . . . . . . . . . . 11 𝑗𝑘
9392, 3nfel 2917 . . . . . . . . . 10 𝑗 𝑘𝐴
9415, 93nfan 1896 . . . . . . . . 9 𝑗(𝜑𝑘𝐴)
95 nfcv 2902 . . . . . . . . . 10 𝑗𝑊
9654, 95nfel 2917 . . . . . . . . 9 𝑗𝑘 / 𝑗𝐵𝑊
9794, 96nfim 1893 . . . . . . . 8 𝑗((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)
98 eleq1w 2821 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
9998anbi2d 630 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝜑𝑗𝐴) ↔ (𝜑𝑘𝐴)))
10058eleq1d 2823 . . . . . . . . 9 (𝑗 = 𝑘 → (𝐵𝑊𝑘 / 𝑗𝐵𝑊))
10199, 100imbi12d 344 . . . . . . . 8 (𝑗 = 𝑘 → (((𝜑𝑗𝐴) → 𝐵𝑊) ↔ ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)))
10297, 101, 8chvarfv 2237 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘 / 𝑗𝐵𝑊)
103102ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊)
104 nfcv 2902 . . . . . . . 8 𝑘𝐵
1053, 51, 104, 54, 58cbviunf 32575 . . . . . . 7 𝑗𝐴 𝐵 = 𝑘𝐴 𝑘 / 𝑗𝐵
106 iunexg 7986 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊) → 𝑘𝐴 𝑘 / 𝑗𝐵 ∈ V)
107105, 106eqeltrid 2842 . . . . . 6 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑘 / 𝑗𝐵𝑊) → 𝑗𝐴 𝐵 ∈ V)
1081, 103, 107syl2anc 584 . . . . 5 (𝜑 𝑗𝐴 𝐵 ∈ V)
109 mptexg 7240 . . . . 5 ( 𝑗𝐴 𝐵 ∈ V → (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) ∈ V)
110 f1eq1 6799 . . . . . . 7 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ↔ (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵)))
111 nfcv 2902 . . . . . . . . 9 𝑥𝑓
112 nfmpt1 5255 . . . . . . . . 9 𝑥(𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
113111, 112nfeq 2916 . . . . . . . 8 𝑥 𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)
114 fveq1 6905 . . . . . . . . 9 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (𝑓𝑥) = ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥))
115114fveqeq2d 6914 . . . . . . . 8 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → ((2nd ‘(𝑓𝑥)) = 𝑥 ↔ (2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
116113, 115ralbid 3270 . . . . . . 7 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → (∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥 ↔ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥))
117110, 116anbi12d 632 . . . . . 6 (𝑓 = (𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) → ((𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥) ↔ ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥)))
118117spcegv 3596 . . . . 5 ((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩) ∈ V → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
119108, 109, 1183syl 18 . . . 4 (𝜑 → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
120119adantr 480 . . 3 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → (((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩): 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘((𝑥 𝑗𝐴 𝐵 ↦ ⟨(𝑔𝑥), 𝑥⟩)‘𝑥)) = 𝑥) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥)))
12191, 120mpd 15 . 2 ((𝜑 ∧ (𝑔: 𝑗𝐴 𝐵𝐴 ∧ ∀𝑥 𝑗𝐴 𝐵𝑥(𝑔𝑥) / 𝑗𝐵)) → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
1229, 121exlimddv 1932 1 (𝜑 → ∃𝑓(𝑓: 𝑗𝐴 𝐵1-1 𝑗𝐴 ({𝑗} × 𝐵) ∧ ∀𝑥 𝑗𝐴 𝐵(2nd ‘(𝑓𝑥)) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wex 1775  wcel 2105  wnfc 2887  wne 2937  wral 3058  wrex 3067  Vcvv 3477  csb 3907  c0 4338  {csn 4630  cop 4636   ciun 4995  cmpt 5230   × cxp 5686  wf 6558  1-1wf1 6559  cfv 6562  2nd c2nd 8011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-reg 9629  ax-inf2 9678  ax-ac2 10500
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-en 8984  df-r1 9801  df-rank 9802  df-card 9976  df-ac 10153
This theorem is referenced by:  aciunf1  32679
  Copyright terms: Public domain W3C validator