Step | Hyp | Ref
| Expression |
1 | | ssint 4892 |
. . 3
⊢ (𝐶 ⊆ ∩ (𝐹
“ 𝐵) ↔
∀𝑦 ∈ (𝐹 “ 𝐵)𝐶 ⊆ 𝑦) |
2 | | df-ral 3068 |
. . 3
⊢
(∀𝑦 ∈
(𝐹 “ 𝐵)𝐶 ⊆ 𝑦 ↔ ∀𝑦(𝑦 ∈ (𝐹 “ 𝐵) → 𝐶 ⊆ 𝑦)) |
3 | 1, 2 | bitri 274 |
. 2
⊢ (𝐶 ⊆ ∩ (𝐹
“ 𝐵) ↔
∀𝑦(𝑦 ∈ (𝐹 “ 𝐵) → 𝐶 ⊆ 𝑦)) |
4 | | fvelimab 6823 |
. . . . 5
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦)) |
5 | 4 | imbi1d 341 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ((𝑦 ∈ (𝐹 “ 𝐵) → 𝐶 ⊆ 𝑦) ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦))) |
6 | 5 | albidv 1924 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐵) → 𝐶 ⊆ 𝑦) ↔ ∀𝑦(∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦))) |
7 | | ralcom4 3161 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∀𝑦((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ ∀𝑦∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦)) |
8 | | eqcom 2745 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) |
9 | 8 | imbi1i 349 |
. . . . . . 7
⊢ (((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ (𝑦 = (𝐹‘𝑥) → 𝐶 ⊆ 𝑦)) |
10 | 9 | albii 1823 |
. . . . . 6
⊢
(∀𝑦((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝐶 ⊆ 𝑦)) |
11 | | fvex 6769 |
. . . . . . 7
⊢ (𝐹‘𝑥) ∈ V |
12 | | sseq2 3943 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (𝐶 ⊆ 𝑦 ↔ 𝐶 ⊆ (𝐹‘𝑥))) |
13 | 11, 12 | ceqsalv 3457 |
. . . . . 6
⊢
(∀𝑦(𝑦 = (𝐹‘𝑥) → 𝐶 ⊆ 𝑦) ↔ 𝐶 ⊆ (𝐹‘𝑥)) |
14 | 10, 13 | bitri 274 |
. . . . 5
⊢
(∀𝑦((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ 𝐶 ⊆ (𝐹‘𝑥)) |
15 | 14 | ralbii 3090 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∀𝑦((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ ∀𝑥 ∈ 𝐵 𝐶 ⊆ (𝐹‘𝑥)) |
16 | | r19.23v 3207 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ (∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦)) |
17 | 16 | albii 1823 |
. . . 4
⊢
(∀𝑦∀𝑥 ∈ 𝐵 ((𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ ∀𝑦(∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦)) |
18 | 7, 15, 17 | 3bitr3ri 301 |
. . 3
⊢
(∀𝑦(∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝑦 → 𝐶 ⊆ 𝑦) ↔ ∀𝑥 ∈ 𝐵 𝐶 ⊆ (𝐹‘𝑥)) |
19 | 6, 18 | bitrdi 286 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐵) → 𝐶 ⊆ 𝑦) ↔ ∀𝑥 ∈ 𝐵 𝐶 ⊆ (𝐹‘𝑥))) |
20 | 3, 19 | syl5bb 282 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ⊆ ∩ (𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐵 𝐶 ⊆ (𝐹‘𝑥))) |