MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssintima Structured version   Visualization version   GIF version

Theorem fnssintima 7361
Description: Condition for subset of an intersection of an image. (Contributed by Scott Fenton, 16-Aug-2024.)
Assertion
Ref Expression
fnssintima ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 (𝐹𝐵) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fnssintima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4968 . . 3 (𝐶 (𝐹𝐵) ↔ ∀𝑦 ∈ (𝐹𝐵)𝐶𝑦)
2 df-ral 3062 . . 3 (∀𝑦 ∈ (𝐹𝐵)𝐶𝑦 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦))
31, 2bitri 274 . 2 (𝐶 (𝐹𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦))
4 fvelimab 6964 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
54imbi1d 341 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦)))
65albidv 1923 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ ∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦)))
7 ralcom4 3283 . . . 4 (∀𝑥𝐵𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦))
8 eqcom 2739 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
98imbi1i 349 . . . . . . 7 (((𝐹𝑥) = 𝑦𝐶𝑦) ↔ (𝑦 = (𝐹𝑥) → 𝐶𝑦))
109albii 1821 . . . . . 6 (∀𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦(𝑦 = (𝐹𝑥) → 𝐶𝑦))
11 fvex 6904 . . . . . . 7 (𝐹𝑥) ∈ V
12 sseq2 4008 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝐶𝑦𝐶 ⊆ (𝐹𝑥)))
1311, 12ceqsalv 3511 . . . . . 6 (∀𝑦(𝑦 = (𝐹𝑥) → 𝐶𝑦) ↔ 𝐶 ⊆ (𝐹𝑥))
1410, 13bitri 274 . . . . 5 (∀𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ 𝐶 ⊆ (𝐹𝑥))
1514ralbii 3093 . . . 4 (∀𝑥𝐵𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥))
16 r19.23v 3182 . . . . 5 (∀𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦))
1716albii 1821 . . . 4 (∀𝑦𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦))
187, 15, 173bitr3ri 301 . . 3 (∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥))
196, 18bitrdi 286 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
203, 19bitrid 282 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 (𝐹𝐵) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3948   cint 4950  cima 5679   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  bday1s  27340  madebdaylemlrcut  27401
  Copyright terms: Public domain W3C validator