MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssintima Structured version   Visualization version   GIF version

Theorem fnssintima 7337
Description: Condition for subset of an intersection of an image. (Contributed by Scott Fenton, 16-Aug-2024.)
Assertion
Ref Expression
fnssintima ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 (𝐹𝐵) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fnssintima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4928 . . 3 (𝐶 (𝐹𝐵) ↔ ∀𝑦 ∈ (𝐹𝐵)𝐶𝑦)
2 df-ral 3045 . . 3 (∀𝑦 ∈ (𝐹𝐵)𝐶𝑦 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦))
31, 2bitri 275 . 2 (𝐶 (𝐹𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦))
4 fvelimab 6933 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
54imbi1d 341 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦)))
65albidv 1920 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ ∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦)))
7 ralcom4 3263 . . . 4 (∀𝑥𝐵𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦))
8 eqcom 2736 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
98imbi1i 349 . . . . . . 7 (((𝐹𝑥) = 𝑦𝐶𝑦) ↔ (𝑦 = (𝐹𝑥) → 𝐶𝑦))
109albii 1819 . . . . . 6 (∀𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦(𝑦 = (𝐹𝑥) → 𝐶𝑦))
11 fvex 6871 . . . . . . 7 (𝐹𝑥) ∈ V
12 sseq2 3973 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝐶𝑦𝐶 ⊆ (𝐹𝑥)))
1311, 12ceqsalv 3487 . . . . . 6 (∀𝑦(𝑦 = (𝐹𝑥) → 𝐶𝑦) ↔ 𝐶 ⊆ (𝐹𝑥))
1410, 13bitri 275 . . . . 5 (∀𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ 𝐶 ⊆ (𝐹𝑥))
1514ralbii 3075 . . . 4 (∀𝑥𝐵𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥))
16 r19.23v 3161 . . . . 5 (∀𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦))
1716albii 1819 . . . 4 (∀𝑦𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦))
187, 15, 173bitr3ri 302 . . 3 (∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥))
196, 18bitrdi 287 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
203, 19bitrid 283 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 (𝐹𝐵) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   cint 4910  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  bday1s  27743  madebdaylemlrcut  27810
  Copyright terms: Public domain W3C validator