MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnssintima Structured version   Visualization version   GIF version

Theorem fnssintima 7365
Description: Condition for subset of an intersection of an image. (Contributed by Scott Fenton, 16-Aug-2024.)
Assertion
Ref Expression
fnssintima ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 (𝐹𝐵) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem fnssintima
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4963 . . 3 (𝐶 (𝐹𝐵) ↔ ∀𝑦 ∈ (𝐹𝐵)𝐶𝑦)
2 df-ral 3058 . . 3 (∀𝑦 ∈ (𝐹𝐵)𝐶𝑦 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦))
31, 2bitri 275 . 2 (𝐶 (𝐹𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦))
4 fvelimab 6966 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝑦))
54imbi1d 341 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦)))
65albidv 1916 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ ∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦)))
7 ralcom4 3279 . . . 4 (∀𝑥𝐵𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦))
8 eqcom 2735 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
98imbi1i 349 . . . . . . 7 (((𝐹𝑥) = 𝑦𝐶𝑦) ↔ (𝑦 = (𝐹𝑥) → 𝐶𝑦))
109albii 1814 . . . . . 6 (∀𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦(𝑦 = (𝐹𝑥) → 𝐶𝑦))
11 fvex 6905 . . . . . . 7 (𝐹𝑥) ∈ V
12 sseq2 4005 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝐶𝑦𝐶 ⊆ (𝐹𝑥)))
1311, 12ceqsalv 3508 . . . . . 6 (∀𝑦(𝑦 = (𝐹𝑥) → 𝐶𝑦) ↔ 𝐶 ⊆ (𝐹𝑥))
1410, 13bitri 275 . . . . 5 (∀𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ 𝐶 ⊆ (𝐹𝑥))
1514ralbii 3089 . . . 4 (∀𝑥𝐵𝑦((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥))
16 r19.23v 3178 . . . . 5 (∀𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦) ↔ (∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦))
1716albii 1814 . . . 4 (∀𝑦𝑥𝐵 ((𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦))
187, 15, 173bitr3ri 302 . . 3 (∀𝑦(∃𝑥𝐵 (𝐹𝑥) = 𝑦𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥))
196, 18bitrdi 287 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑦(𝑦 ∈ (𝐹𝐵) → 𝐶𝑦) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
203, 19bitrid 283 1 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 (𝐹𝐵) ↔ ∀𝑥𝐵 𝐶 ⊆ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  wral 3057  wrex 3066  wss 3945   cint 4945  cima 5676   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by:  bday1s  27758  madebdaylemlrcut  27819
  Copyright terms: Public domain W3C validator