| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimass4 | Structured version Visualization version GIF version | ||
| Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| funimass4 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3931 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵)) | |
| 2 | vex 3451 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elima 6036 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
| 4 | eqcom 2736 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 5 | ssel 3940 | . . . . . . . . . . . 12 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
| 6 | funbrfvb 6914 | . . . . . . . . . . . . 13 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
| 7 | 6 | ex 412 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦))) |
| 8 | 5, 7 | syl9 77 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)))) |
| 9 | 8 | imp31 417 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
| 10 | 4, 9 | bitrid 283 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
| 11 | 10 | rexbidva 3155 | . . . . . . . 8 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 12 | 3, 11 | bitr4id 290 | . . . . . . 7 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 13 | 12 | imbi1d 341 | . . . . . 6 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
| 14 | r19.23v 3161 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
| 15 | 13, 14 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
| 16 | 15 | albidv 1920 | . . . 4 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
| 17 | ralcom4 3263 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
| 18 | fvex 6871 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
| 19 | eleq1 2816 | . . . . . . 7 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) | |
| 20 | 18, 19 | ceqsalv 3487 | . . . . . 6 ⊢ (∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (𝐹‘𝑥) ∈ 𝐵) |
| 21 | 20 | ralbii 3075 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 22 | 17, 21 | bitr3i 277 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 23 | 16, 22 | bitrdi 287 | . . 3 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 24 | 1, 23 | bitrid 283 | . 2 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 25 | 24 | ancoms 458 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 “ cima 5641 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: funimass3 7026 funimass5 7027 funconstss 7028 fssrescdmd 7098 funimassov 7566 fnwelem 8110 cnfcomlem 9652 dfac12lem2 10098 ackbij1b 10191 wunom 10673 phimullem 16749 frmdss2 18790 cntzmhm2 19274 dprd2da 19974 frlmsslsp 21705 1stckgenlem 23440 txcnp 23507 ptcnplem 23508 xkopt 23542 xkoinjcn 23574 tgqtop 23599 uzrest 23784 cnflf2 23890 lmflf 23892 txflf 23893 cnextcn 23954 ghmcnp 24002 ucnima 24168 metcnp 24429 tcphcph 25137 ovolficcss 25370 opnmbllem 25502 ellimc2 25778 ellimc3 25780 deg1n0ima 25994 dvloglem 26557 logf1o2 26559 dchrghm 27167 madebdayim 27799 madefi 27824 oldfi 27825 addsbdaylem 27923 negsproplem2 27935 negsbdaylem 27962 onscutlt 28165 onsiso 28169 bdayon 28173 upgrreslem 29231 umgrreslem 29232 xrofsup 32690 eulerpartlemd 34357 erdszelem2 35179 cvmlift3lem7 35312 mclsax 35556 filnetlem4 36369 poimir 37647 opnmbllem0 37650 cnres2 37757 icccncfext 45885 isubgruhgr 47868 |
| Copyright terms: Public domain | W3C validator |