MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass4 Structured version   Visualization version   GIF version

Theorem funimass4 6886
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem funimass4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ss 3919 . . 3 ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
2 vex 3440 . . . . . . . . 9 𝑦 ∈ V
32elima 6014 . . . . . . . 8 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑥𝐹𝑦)
4 eqcom 2738 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
5 ssel 3928 . . . . . . . . . . . 12 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
6 funbrfvb 6875 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
76ex 412 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)))
85, 7syl9 77 . . . . . . . . . . 11 (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))))
98imp31 417 . . . . . . . . . 10 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
104, 9bitrid 283 . . . . . . . . 9 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1110rexbidva 3154 . . . . . . . 8 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝑥𝐹𝑦))
123, 11bitr4id 290 . . . . . . 7 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
1312imbi1d 341 . . . . . 6 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵)))
14 r19.23v 3159 . . . . . 6 (∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
1513, 14bitr4di 289 . . . . 5 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1615albidv 1921 . . . 4 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
17 ralcom4 3258 . . . . 5 (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵))
18 fvex 6835 . . . . . . 7 (𝐹𝑥) ∈ V
19 eleq1 2819 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2018, 19ceqsalv 3476 . . . . . 6 (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵)
2120ralbii 3078 . . . . 5 (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
2217, 21bitr3i 277 . . . 4 (∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
2316, 22bitrdi 287 . . 3 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
241, 23bitrid 283 . 2 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2524ancoms 458 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  dom cdm 5616  cima 5619  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  funimass3  6987  funimass5  6988  funconstss  6989  fssrescdmd  7059  funimassov  7523  fnwelem  8061  cnfcomlem  9589  dfac12lem2  10033  ackbij1b  10126  wunom  10608  phimullem  16687  frmdss2  18768  cntzmhm2  19252  dprd2da  19954  frlmsslsp  21731  1stckgenlem  23466  txcnp  23533  ptcnplem  23534  xkopt  23568  xkoinjcn  23600  tgqtop  23625  uzrest  23810  cnflf2  23916  lmflf  23918  txflf  23919  cnextcn  23980  ghmcnp  24028  ucnima  24193  metcnp  24454  tcphcph  25162  ovolficcss  25395  opnmbllem  25527  ellimc2  25803  ellimc3  25805  deg1n0ima  26019  dvloglem  26582  logf1o2  26584  dchrghm  27192  madebdayim  27831  madefi  27856  oldfi  27857  addsbdaylem  27957  negsproplem2  27969  negsbdaylem  27996  onscutlt  28199  onsiso  28203  bdayon  28207  upgrreslem  29280  umgrreslem  29281  xrofsup  32745  eulerpartlemd  34374  erdszelem2  35224  cvmlift3lem7  35357  mclsax  35601  filnetlem4  36414  poimir  37692  opnmbllem0  37695  cnres2  37802  icccncfext  45924  isubgruhgr  47898
  Copyright terms: Public domain W3C validator