![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimass4 | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
funimass4 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3980 | . . 3 ⊢ ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵)) | |
2 | vex 3482 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
3 | 2 | elima 6085 | . . . . . . . 8 ⊢ (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
4 | eqcom 2742 | . . . . . . . . . 10 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
5 | ssel 3989 | . . . . . . . . . . . 12 ⊢ (𝐴 ⊆ dom 𝐹 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) | |
6 | funbrfvb 6962 | . . . . . . . . . . . . 13 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
7 | 6 | ex 412 | . . . . . . . . . . . 12 ⊢ (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦))) |
8 | 5, 7 | syl9 77 | . . . . . . . . . . 11 ⊢ (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)))) |
9 | 8 | imp31 417 | . . . . . . . . . 10 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
10 | 4, 9 | bitrid 283 | . . . . . . . . 9 ⊢ (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹‘𝑥) ↔ 𝑥𝐹𝑦)) |
11 | 10 | rexbidva 3175 | . . . . . . . 8 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
12 | 3, 11 | bitr4id 290 | . . . . . . 7 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹 “ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
13 | 12 | imbi1d 341 | . . . . . 6 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
14 | r19.23v 3181 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
15 | 13, 14 | bitr4di 289 | . . . . 5 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
16 | 15 | albidv 1918 | . . . 4 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵))) |
17 | ralcom4 3284 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵)) | |
18 | fvex 6920 | . . . . . . 7 ⊢ (𝐹‘𝑥) ∈ V | |
19 | eleq1 2827 | . . . . . . 7 ⊢ (𝑦 = (𝐹‘𝑥) → (𝑦 ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) | |
20 | 18, 19 | ceqsalv 3519 | . . . . . 6 ⊢ (∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ (𝐹‘𝑥) ∈ 𝐵) |
21 | 20 | ralbii 3091 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
22 | 17, 21 | bitr3i 277 | . . . 4 ⊢ (∀𝑦∀𝑥 ∈ 𝐴 (𝑦 = (𝐹‘𝑥) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
23 | 16, 22 | bitrdi 287 | . . 3 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
24 | 1, 23 | bitrid 283 | . 2 ⊢ ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
25 | 24 | ancoms 458 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 dom cdm 5689 “ cima 5692 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: funimass3 7074 funimass5 7075 funconstss 7076 fssrescdmd 7146 funimassov 7610 fnwelem 8155 cnfcomlem 9737 dfac12lem2 10183 ackbij1b 10276 wunom 10758 phimullem 16813 frmdss2 18889 cntzmhm2 19373 dprd2da 20077 frlmsslsp 21834 1stckgenlem 23577 txcnp 23644 ptcnplem 23645 xkopt 23679 xkoinjcn 23711 tgqtop 23736 uzrest 23921 cnflf2 24027 lmflf 24029 txflf 24030 cnextcn 24091 ghmcnp 24139 ucnima 24306 metcnp 24570 tcphcph 25285 ovolficcss 25518 opnmbllem 25650 ellimc2 25927 ellimc3 25929 deg1n0ima 26143 dvloglem 26705 logf1o2 26707 dchrghm 27315 madebdayim 27941 madefi 27965 oldfi 27966 addsbdaylem 28064 negsproplem2 28076 negsbdaylem 28103 upgrreslem 29336 umgrreslem 29337 xrofsup 32778 eulerpartlemd 34348 erdszelem2 35177 cvmlift3lem7 35310 mclsax 35554 filnetlem4 36364 poimir 37640 opnmbllem0 37643 cnres2 37750 icccncfext 45843 isubgruhgr 47792 |
Copyright terms: Public domain | W3C validator |