MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimass4 Structured version   Visualization version   GIF version

Theorem funimass4 6590
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem funimass4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3872 . . 3 ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
2 eqcom 2800 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
3 ssel 3878 . . . . . . . . . . . 12 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
4 funbrfvb 6580 . . . . . . . . . . . . 13 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
54ex 413 . . . . . . . . . . . 12 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦)))
63, 5syl9 77 . . . . . . . . . . 11 (𝐴 ⊆ dom 𝐹 → (Fun 𝐹 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))))
76imp31 418 . . . . . . . . . 10 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
82, 7syl5bb 284 . . . . . . . . 9 (((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) ∧ 𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
98rexbidva 3256 . . . . . . . 8 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝑥𝐹𝑦))
10 vex 3435 . . . . . . . . 9 𝑦 ∈ V
1110elima 5803 . . . . . . . 8 (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑥𝐹𝑦)
129, 11syl6rbbr 291 . . . . . . 7 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (𝑦 ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
1312imbi1d 343 . . . . . 6 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵)))
14 r19.23v 3239 . . . . . 6 (∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (∃𝑥𝐴 𝑦 = (𝐹𝑥) → 𝑦𝐵))
1513, 14syl6bbr 290 . . . . 5 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
1615albidv 1896 . . . 4 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵)))
17 ralcom4 3197 . . . . 5 (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵))
18 fvex 6543 . . . . . . 7 (𝐹𝑥) ∈ V
19 eleq1 2868 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑦𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2018, 19ceqsalv 3470 . . . . . 6 (∀𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ (𝐹𝑥) ∈ 𝐵)
2120ralbii 3130 . . . . 5 (∀𝑥𝐴𝑦(𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
2217, 21bitr3i 278 . . . 4 (∀𝑦𝑥𝐴 (𝑦 = (𝐹𝑥) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
2316, 22syl6bb 288 . . 3 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → (∀𝑦(𝑦 ∈ (𝐹𝐴) → 𝑦𝐵) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
241, 23syl5bb 284 . 2 ((𝐴 ⊆ dom 𝐹 ∧ Fun 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2524ancoms 459 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1518   = wceq 1520  wcel 2079  wral 3103  wrex 3104  wss 3854   class class class wbr 4956  dom cdm 5435  cima 5438  Fun wfun 6211  cfv 6217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-sbc 3702  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-fv 6225
This theorem is referenced by:  funimass3  6680  funimass5  6681  funconstss  6682  funimassov  7172  fnwelem  7669  cnfcomlem  8997  dfac12lem2  9405  ackbij1b  9496  wunom  9977  phimullem  15933  frmdss2  17827  cntzmhm2  18199  dprd2da  18869  frlmsslsp  20610  1stckgenlem  21833  txcnp  21900  ptcnplem  21901  xkopt  21935  xkoinjcn  21967  tgqtop  21992  uzrest  22177  cnflf2  22283  lmflf  22285  txflf  22286  cnextcn  22347  ghmcnp  22394  ucnima  22561  metcnp  22822  tcphcph  23511  ovolficcss  23741  opnmbllem  23873  ellimc2  24146  ellimc3  24148  deg1n0ima  24354  dvloglem  24900  logf1o2  24902  dchrghm  25502  upgrreslem  26757  umgrreslem  26758  xrofsup  30153  eulerpartlemd  31197  erdszelem2  32003  cvmlift3lem7  32136  mclsax  32369  filnetlem4  33283  poimir  34402  opnmbllem0  34405  cnres2  34519  icccncfext  41665
  Copyright terms: Public domain W3C validator