MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqalov Structured version   Visualization version   GIF version

Theorem imaeqalov 7585
Description: Substitute an operation value into a universal quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqalov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqalov
StepHypRef Expression
1 df-ral 3048 . . 3 (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑))
2 ovelimab 7524 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32imbi1d 341 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
43albidv 1921 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
51, 4bitrid 283 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
6 ralcom4 3258 . . . 4 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
7 r19.23v 3159 . . . . . . 7 (∀𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
87ralbii 3078 . . . . . 6 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
9 r19.23v 3159 . . . . . 6 (∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
108, 9bitri 275 . . . . 5 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
1110albii 1820 . . . 4 (∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
126, 11bitri 275 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
13 ralcom4 3258 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
14 ovex 7379 . . . . . . 7 (𝑦𝐹𝑧) ∈ V
15 imaeqexov.1 . . . . . . 7 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1614, 15ceqsalv 3476 . . . . . 6 (∀𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ 𝜓)
1716ralbii 3078 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1813, 17bitr3i 277 . . . 4 (∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1918ralbii 3078 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
2012, 19bitr3i 277 . 2 (∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
215, 20bitrdi 287 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897   × cxp 5612  cima 5617   Fn wfn 6476  (class class class)co 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349
This theorem is referenced by:  naddunif  8608  naddasslem1  8609  naddasslem2  8610
  Copyright terms: Public domain W3C validator