MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqalov Structured version   Visualization version   GIF version

Theorem imaeqalov 7588
Description: Substitute an operation value into a universal quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqalov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqalov
StepHypRef Expression
1 df-ral 3045 . . 3 (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑))
2 ovelimab 7527 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32imbi1d 341 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
43albidv 1920 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
51, 4bitrid 283 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
6 ralcom4 3255 . . . 4 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
7 r19.23v 3156 . . . . . . 7 (∀𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
87ralbii 3075 . . . . . 6 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
9 r19.23v 3156 . . . . . 6 (∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
108, 9bitri 275 . . . . 5 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
1110albii 1819 . . . 4 (∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
126, 11bitri 275 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
13 ralcom4 3255 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
14 ovex 7382 . . . . . . 7 (𝑦𝐹𝑧) ∈ V
15 imaeqexov.1 . . . . . . 7 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1614, 15ceqsalv 3476 . . . . . 6 (∀𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ 𝜓)
1716ralbii 3075 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1813, 17bitr3i 277 . . . 4 (∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1918ralbii 3075 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
2012, 19bitr3i 277 . 2 (∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
215, 20bitrdi 287 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903   × cxp 5617  cima 5622   Fn wfn 6477  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-ov 7352
This theorem is referenced by:  naddunif  8611  naddasslem1  8612  naddasslem2  8613
  Copyright terms: Public domain W3C validator