MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqalov Structured version   Visualization version   GIF version

Theorem imaeqalov 7631
Description: Substitute an operation value into a universal quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqalov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqalov
StepHypRef Expression
1 df-ral 3046 . . 3 (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑))
2 ovelimab 7570 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32imbi1d 341 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
43albidv 1920 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
51, 4bitrid 283 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
6 ralcom4 3264 . . . 4 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
7 r19.23v 3162 . . . . . . 7 (∀𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
87ralbii 3076 . . . . . 6 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
9 r19.23v 3162 . . . . . 6 (∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
108, 9bitri 275 . . . . 5 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
1110albii 1819 . . . 4 (∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
126, 11bitri 275 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
13 ralcom4 3264 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
14 ovex 7423 . . . . . . 7 (𝑦𝐹𝑧) ∈ V
15 imaeqexov.1 . . . . . . 7 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1614, 15ceqsalv 3490 . . . . . 6 (∀𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ 𝜓)
1716ralbii 3076 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1813, 17bitr3i 277 . . . 4 (∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1918ralbii 3076 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
2012, 19bitr3i 277 . 2 (∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
215, 20bitrdi 287 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   × cxp 5639  cima 5644   Fn wfn 6509  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-ov 7393
This theorem is referenced by:  naddunif  8660  naddasslem1  8661  naddasslem2  8662
  Copyright terms: Public domain W3C validator