MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqalov Structured version   Visualization version   GIF version

Theorem imaeqalov 7628
Description: Substitute an operation value into a universal quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqalov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqalov
StepHypRef Expression
1 df-ral 3061 . . 3 (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑))
2 ovelimab 7567 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32imbi1d 341 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
43albidv 1923 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
51, 4bitrid 282 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
6 ralcom4 3282 . . . 4 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
7 r19.23v 3181 . . . . . . 7 (∀𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
87ralbii 3092 . . . . . 6 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
9 r19.23v 3181 . . . . . 6 (∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
108, 9bitri 274 . . . . 5 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
1110albii 1821 . . . 4 (∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
126, 11bitri 274 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
13 ralcom4 3282 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
14 ovex 7425 . . . . . . 7 (𝑦𝐹𝑧) ∈ V
15 imaeqexov.1 . . . . . . 7 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1614, 15ceqsalv 3508 . . . . . 6 (∀𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ 𝜓)
1716ralbii 3092 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1813, 17bitr3i 276 . . . 4 (∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1918ralbii 3092 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
2012, 19bitr3i 276 . 2 (∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
215, 20bitrdi 286 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wral 3060  wrex 3069  wss 3943   × cxp 5666  cima 5671   Fn wfn 6526  (class class class)co 7392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5291  ax-nul 5298  ax-pr 5419
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3474  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4991  df-br 5141  df-opab 5203  df-id 5566  df-xp 5674  df-rel 5675  df-cnv 5676  df-co 5677  df-dm 5678  df-rn 5679  df-res 5680  df-ima 5681  df-iota 6483  df-fun 6533  df-fn 6534  df-fv 6539  df-ov 7395
This theorem is referenced by:  naddunif  8674  naddasslem1  8675  naddasslem2  8676
  Copyright terms: Public domain W3C validator