MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeqalov Structured version   Visualization version   GIF version

Theorem imaeqalov 7646
Description: Substitute an operation value into a universal quantifier over an image. (Contributed by Scott Fenton, 20-Jan-2025.)
Hypothesis
Ref Expression
imaeqexov.1 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
Assertion
Ref Expression
imaeqalov ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem imaeqalov
StepHypRef Expression
1 df-ral 3052 . . 3 (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑))
2 ovelimab 7585 . . . . 5 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) ↔ ∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧)))
32imbi1d 341 . . . 4 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → ((𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
43albidv 1920 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥(𝑥 ∈ (𝐹 “ (𝐵 × 𝐶)) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
51, 4bitrid 283 . 2 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑)))
6 ralcom4 3268 . . . 4 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
7 r19.23v 3168 . . . . . . 7 (∀𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
87ralbii 3082 . . . . . 6 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
9 r19.23v 3168 . . . . . 6 (∀𝑦𝐵 (∃𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
108, 9bitri 275 . . . . 5 (∀𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ (∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
1110albii 1819 . . . 4 (∀𝑥𝑦𝐵𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
126, 11bitri 275 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑))
13 ralcom4 3268 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑))
14 ovex 7438 . . . . . . 7 (𝑦𝐹𝑧) ∈ V
15 imaeqexov.1 . . . . . . 7 (𝑥 = (𝑦𝐹𝑧) → (𝜑𝜓))
1614, 15ceqsalv 3500 . . . . . 6 (∀𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ 𝜓)
1716ralbii 3082 . . . . 5 (∀𝑧𝐶𝑥(𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1813, 17bitr3i 277 . . . 4 (∀𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑧𝐶 𝜓)
1918ralbii 3082 . . 3 (∀𝑦𝐵𝑥𝑧𝐶 (𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
2012, 19bitr3i 277 . 2 (∀𝑥(∃𝑦𝐵𝑧𝐶 𝑥 = (𝑦𝐹𝑧) → 𝜑) ↔ ∀𝑦𝐵𝑧𝐶 𝜓)
215, 20bitrdi 287 1 ((𝐹 Fn 𝐴 ∧ (𝐵 × 𝐶) ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ (𝐵 × 𝐶))𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   × cxp 5652  cima 5657   Fn wfn 6526  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539  df-ov 7408
This theorem is referenced by:  naddunif  8705  naddasslem1  8706  naddasslem2  8707
  Copyright terms: Public domain W3C validator