MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc2 Structured version   Visualization version   GIF version

Theorem vdwmc2 16309
Description: Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
vdwmc2.4 (𝜑𝐴𝑋)
Assertion
Ref Expression
vdwmc2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑚,𝐹   𝐾,𝑎,𝑐,𝑑,𝑚   𝜑,𝑐   𝑅,𝑎,𝑐,𝑑   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑚,𝑎,𝑐,𝑑)   𝑅(𝑚)   𝑋(𝑚,𝑎,𝑐,𝑑)

Proof of Theorem vdwmc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwmc.1 . . 3 𝑋 ∈ V
2 vdwmc.2 . . 3 (𝜑𝐾 ∈ ℕ0)
3 vdwmc.3 . . 3 (𝜑𝐹:𝑋𝑅)
41, 2, 3vdwmc 16308 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
5 vdwapid1 16305 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
65ne0d 4300 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
763expb 1116 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
87adantll 712 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
9 ssn0 4353 . . . . . . . . . 10 (((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ∧ (𝑎(AP‘𝐾)𝑑) ≠ ∅) → (𝐹 “ {𝑐}) ≠ ∅)
109expcom 416 . . . . . . . . 9 ((𝑎(AP‘𝐾)𝑑) ≠ ∅ → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → (𝐹 “ {𝑐}) ≠ ∅))
118, 10syl 17 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → (𝐹 “ {𝑐}) ≠ ∅))
12 disjsn 4640 . . . . . . . . . 10 ((𝑅 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑅)
133adantr 483 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ ℕ) → 𝐹:𝑋𝑅)
14 fimacnvdisj 6551 . . . . . . . . . . . . 13 ((𝐹:𝑋𝑅 ∧ (𝑅 ∩ {𝑐}) = ∅) → (𝐹 “ {𝑐}) = ∅)
1514ex 415 . . . . . . . . . . . 12 (𝐹:𝑋𝑅 → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1613, 15syl 17 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ℕ) → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1716adantr 483 . . . . . . . . . 10 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1812, 17syl5bir 245 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (¬ 𝑐𝑅 → (𝐹 “ {𝑐}) = ∅))
1918necon1ad 3033 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝐹 “ {𝑐}) ≠ ∅ → 𝑐𝑅))
2011, 19syld 47 . . . . . . 7 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → 𝑐𝑅))
2120rexlimdvva 3294 . . . . . 6 ((𝜑𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → 𝑐𝑅))
2221pm4.71rd 565 . . . . 5 ((𝜑𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))))
2322exbidv 1918 . . . 4 ((𝜑𝐾 ∈ ℕ) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))))
24 df-rex 3144 . . . 4 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
2523, 24syl6bbr 291 . . 3 ((𝜑𝐾 ∈ ℕ) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
26 vdwmc2.4 . . . . . . . 8 (𝜑𝐴𝑋)
273, 26ffvelrnd 6846 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝑅)
2827ne0d 4300 . . . . . 6 (𝜑𝑅 ≠ ∅)
29 1nn 11643 . . . . . . . . 9 1 ∈ ℕ
3029ne0ii 4302 . . . . . . . 8 ℕ ≠ ∅
31 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → 𝐾 = 0)
3231fveq2d 6668 . . . . . . . . . . . . . 14 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (AP‘𝐾) = (AP‘0))
3332oveqd 7167 . . . . . . . . . . . . 13 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = (𝑎(AP‘0)𝑑))
34 vdwap0 16306 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅)
3534adantll 712 . . . . . . . . . . . . 13 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅)
3633, 35eqtrd 2856 . . . . . . . . . . . 12 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = ∅)
37 0ss 4349 . . . . . . . . . . . 12 ∅ ⊆ (𝐹 “ {𝑐})
3836, 37eqsstrdi 4020 . . . . . . . . . . 11 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
3938ralrimiva 3182 . . . . . . . . . 10 (((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
40 r19.2z 4439 . . . . . . . . . 10 ((ℕ ≠ ∅ ∧ ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4130, 39, 40sylancr 589 . . . . . . . . 9 (((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4241ralrimiva 3182 . . . . . . . 8 ((𝜑𝐾 = 0) → ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
43 r19.2z 4439 . . . . . . . 8 ((ℕ ≠ ∅ ∧ ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4430, 42, 43sylancr 589 . . . . . . 7 ((𝜑𝐾 = 0) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4544ralrimivw 3183 . . . . . 6 ((𝜑𝐾 = 0) → ∀𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
46 r19.2z 4439 . . . . . 6 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4728, 45, 46syl2an2r 683 . . . . 5 ((𝜑𝐾 = 0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
48 rexex 3240 . . . . 5 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4947, 48syl 17 . . . 4 ((𝜑𝐾 = 0) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
5049, 472thd 267 . . 3 ((𝜑𝐾 = 0) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
51 elnn0 11893 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
522, 51sylib 220 . . 3 (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
5325, 50, 52mpjaodan 955 . 2 (𝜑 → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
54 vdwapval 16303 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
55543expb 1116 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
562, 55sylan 582 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
5756imbi1d 344 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐}))))
5857albidv 1917 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐}))))
59 dfss2 3954 . . . . 5 ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})))
60 ralcom4 3235 . . . . . 6 (∀𝑚 ∈ (0...(𝐾 − 1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
61 ovex 7183 . . . . . . . 8 (𝑎 + (𝑚 · 𝑑)) ∈ V
62 eleq1 2900 . . . . . . . 8 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6361, 62ceqsalv 3532 . . . . . . 7 (∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6463ralbii 3165 . . . . . 6 (∀𝑚 ∈ (0...(𝐾 − 1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
65 r19.23v 3279 . . . . . . 7 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
6665albii 1816 . . . . . 6 (∀𝑥𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
6760, 64, 663bitr3i 303 . . . . 5 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
6858, 59, 673bitr4g 316 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
69682rexbidva 3299 . . 3 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
7069rexbidv 3297 . 2 (𝜑 → (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
714, 53, 703bitrd 307 1 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wal 1531   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cin 3934  wss 3935  c0 4290  {csn 4560   class class class wbr 5058  ccnv 5548  cima 5552  wf 6345  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864  cn 11632  0cn0 11891  ...cfz 12886  APcvdwa 16295   MonoAP cvdwm 16296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-vdwap 16298  df-vdwmc 16299
This theorem is referenced by:  vdw  16324
  Copyright terms: Public domain W3C validator