MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc2 Structured version   Visualization version   GIF version

Theorem vdwmc2 17000
Description: Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
vdwmc2.4 (𝜑𝐴𝑋)
Assertion
Ref Expression
vdwmc2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑚,𝐹   𝐾,𝑎,𝑐,𝑑,𝑚   𝜑,𝑐   𝑅,𝑎,𝑐,𝑑   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑚,𝑎,𝑐,𝑑)   𝑅(𝑚)   𝑋(𝑚,𝑎,𝑐,𝑑)

Proof of Theorem vdwmc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwmc.1 . . 3 𝑋 ∈ V
2 vdwmc.2 . . 3 (𝜑𝐾 ∈ ℕ0)
3 vdwmc.3 . . 3 (𝜑𝐹:𝑋𝑅)
41, 2, 3vdwmc 16999 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
5 vdwapid1 16996 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
65ne0d 4322 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
763expb 1120 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
87adantll 714 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
9 ssn0 4384 . . . . . . . . . 10 (((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ∧ (𝑎(AP‘𝐾)𝑑) ≠ ∅) → (𝐹 “ {𝑐}) ≠ ∅)
109expcom 413 . . . . . . . . 9 ((𝑎(AP‘𝐾)𝑑) ≠ ∅ → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → (𝐹 “ {𝑐}) ≠ ∅))
118, 10syl 17 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → (𝐹 “ {𝑐}) ≠ ∅))
12 disjsn 4691 . . . . . . . . . 10 ((𝑅 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑅)
133adantr 480 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ ℕ) → 𝐹:𝑋𝑅)
14 fimacnvdisj 6766 . . . . . . . . . . . . 13 ((𝐹:𝑋𝑅 ∧ (𝑅 ∩ {𝑐}) = ∅) → (𝐹 “ {𝑐}) = ∅)
1514ex 412 . . . . . . . . . . . 12 (𝐹:𝑋𝑅 → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1613, 15syl 17 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ℕ) → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1716adantr 480 . . . . . . . . . 10 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1812, 17biimtrrid 243 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (¬ 𝑐𝑅 → (𝐹 “ {𝑐}) = ∅))
1918necon1ad 2948 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝐹 “ {𝑐}) ≠ ∅ → 𝑐𝑅))
2011, 19syld 47 . . . . . . 7 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → 𝑐𝑅))
2120rexlimdvva 3200 . . . . . 6 ((𝜑𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → 𝑐𝑅))
2221pm4.71rd 562 . . . . 5 ((𝜑𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))))
2322exbidv 1920 . . . 4 ((𝜑𝐾 ∈ ℕ) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))))
24 df-rex 3060 . . . 4 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
2523, 24bitr4di 289 . . 3 ((𝜑𝐾 ∈ ℕ) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
26 vdwmc2.4 . . . . . . . 8 (𝜑𝐴𝑋)
273, 26ffvelcdmd 7085 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ 𝑅)
2827ne0d 4322 . . . . . 6 (𝜑𝑅 ≠ ∅)
29 1nn 12259 . . . . . . . . 9 1 ∈ ℕ
3029ne0ii 4324 . . . . . . . 8 ℕ ≠ ∅
31 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → 𝐾 = 0)
3231fveq2d 6890 . . . . . . . . . . . . . 14 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (AP‘𝐾) = (AP‘0))
3332oveqd 7430 . . . . . . . . . . . . 13 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = (𝑎(AP‘0)𝑑))
34 vdwap0 16997 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅)
3534adantll 714 . . . . . . . . . . . . 13 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅)
3633, 35eqtrd 2769 . . . . . . . . . . . 12 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = ∅)
37 0ss 4380 . . . . . . . . . . . 12 ∅ ⊆ (𝐹 “ {𝑐})
3836, 37eqsstrdi 4008 . . . . . . . . . . 11 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
3938ralrimiva 3133 . . . . . . . . . 10 (((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
40 r19.2z 4475 . . . . . . . . . 10 ((ℕ ≠ ∅ ∧ ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4130, 39, 40sylancr 587 . . . . . . . . 9 (((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4241ralrimiva 3133 . . . . . . . 8 ((𝜑𝐾 = 0) → ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
43 r19.2z 4475 . . . . . . . 8 ((ℕ ≠ ∅ ∧ ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4430, 42, 43sylancr 587 . . . . . . 7 ((𝜑𝐾 = 0) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4544ralrimivw 3137 . . . . . 6 ((𝜑𝐾 = 0) → ∀𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
46 r19.2z 4475 . . . . . 6 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4728, 45, 46syl2an2r 685 . . . . 5 ((𝜑𝐾 = 0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
48 rexex 3065 . . . . 5 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4947, 48syl 17 . . . 4 ((𝜑𝐾 = 0) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
5049, 472thd 265 . . 3 ((𝜑𝐾 = 0) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
51 elnn0 12511 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
522, 51sylib 218 . . 3 (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
5325, 50, 52mpjaodan 960 . 2 (𝜑 → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
54 vdwapval 16994 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
55543expb 1120 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
562, 55sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
5756imbi1d 341 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐}))))
5857albidv 1919 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐}))))
59 df-ss 3948 . . . . 5 ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})))
60 ralcom4 3271 . . . . . 6 (∀𝑚 ∈ (0...(𝐾 − 1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
61 ovex 7446 . . . . . . . 8 (𝑎 + (𝑚 · 𝑑)) ∈ V
62 eleq1 2821 . . . . . . . 8 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6361, 62ceqsalv 3504 . . . . . . 7 (∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6463ralbii 3081 . . . . . 6 (∀𝑚 ∈ (0...(𝐾 − 1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
65 r19.23v 3170 . . . . . . 7 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
6665albii 1818 . . . . . 6 (∀𝑥𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
6760, 64, 663bitr3i 301 . . . . 5 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
6858, 59, 673bitr4g 314 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
69682rexbidva 3207 . . 3 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
7069rexbidv 3166 . 2 (𝜑 → (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
714, 53, 703bitrd 305 1 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1537   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  wrex 3059  Vcvv 3463  cin 3930  wss 3931  c0 4313  {csn 4606   class class class wbr 5123  ccnv 5664  cima 5668  wf 6537  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  cmin 11474  cn 12248  0cn0 12509  ...cfz 13529  APcvdwa 16986   MonoAP cvdwm 16987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-vdwap 16989  df-vdwmc 16990
This theorem is referenced by:  vdw  17015
  Copyright terms: Public domain W3C validator