| Step | Hyp | Ref
| Expression |
| 1 | | vdwmc.1 |
. . 3
⊢ 𝑋 ∈ V |
| 2 | | vdwmc.2 |
. . 3
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 3 | | vdwmc.3 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑅) |
| 4 | 1, 2, 3 | vdwmc 17016 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 5 | | vdwapid1 17013 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑)) |
| 6 | 5 | ne0d 4342 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ≠ ∅) |
| 7 | 6 | 3expb 1121 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅) |
| 8 | 7 | adantll 714 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅) |
| 9 | | ssn0 4404 |
. . . . . . . . . 10
⊢ (((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ∧ (𝑎(AP‘𝐾)𝑑) ≠ ∅) → (◡𝐹 “ {𝑐}) ≠ ∅) |
| 10 | 9 | expcom 413 |
. . . . . . . . 9
⊢ ((𝑎(AP‘𝐾)𝑑) ≠ ∅ → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → (◡𝐹 “ {𝑐}) ≠ ∅)) |
| 11 | 8, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → (◡𝐹 “ {𝑐}) ≠ ∅)) |
| 12 | | disjsn 4711 |
. . . . . . . . . 10
⊢ ((𝑅 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐 ∈ 𝑅) |
| 13 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐹:𝑋⟶𝑅) |
| 14 | | fimacnvdisj 6786 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶𝑅 ∧ (𝑅 ∩ {𝑐}) = ∅) → (◡𝐹 “ {𝑐}) = ∅) |
| 15 | 14 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶𝑅 → ((𝑅 ∩ {𝑐}) = ∅ → (◡𝐹 “ {𝑐}) = ∅)) |
| 16 | 13, 15 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → ((𝑅 ∩ {𝑐}) = ∅ → (◡𝐹 “ {𝑐}) = ∅)) |
| 17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑅 ∩ {𝑐}) = ∅ → (◡𝐹 “ {𝑐}) = ∅)) |
| 18 | 12, 17 | biimtrrid 243 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (¬ 𝑐 ∈ 𝑅 → (◡𝐹 “ {𝑐}) = ∅)) |
| 19 | 18 | necon1ad 2957 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((◡𝐹 “ {𝑐}) ≠ ∅ → 𝑐 ∈ 𝑅)) |
| 20 | 11, 19 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → 𝑐 ∈ 𝑅)) |
| 21 | 20 | rexlimdvva 3213 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → 𝑐 ∈ 𝑅)) |
| 22 | 21 | pm4.71rd 562 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ (𝑐 ∈ 𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})))) |
| 23 | 22 | exbidv 1921 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐 ∈ 𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})))) |
| 24 | | df-rex 3071 |
. . . 4
⊢
(∃𝑐 ∈
𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐 ∈ 𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 25 | 23, 24 | bitr4di 289 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 26 | | vdwmc2.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 27 | 3, 26 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑅) |
| 28 | 27 | ne0d 4342 |
. . . . . 6
⊢ (𝜑 → 𝑅 ≠ ∅) |
| 29 | | 1nn 12277 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
| 30 | 29 | ne0ii 4344 |
. . . . . . . 8
⊢ ℕ
≠ ∅ |
| 31 | | simpllr 776 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → 𝐾 = 0) |
| 32 | 31 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (AP‘𝐾) =
(AP‘0)) |
| 33 | 32 | oveqd 7448 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = (𝑎(AP‘0)𝑑)) |
| 34 | | vdwap0 17014 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅) |
| 35 | 34 | adantll 714 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅) |
| 36 | 33, 35 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = ∅) |
| 37 | | 0ss 4400 |
. . . . . . . . . . . 12
⊢ ∅
⊆ (◡𝐹 “ {𝑐}) |
| 38 | 36, 37 | eqsstrdi 4028 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 39 | 38 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 40 | | r19.2z 4495 |
. . . . . . . . . 10
⊢ ((ℕ
≠ ∅ ∧ ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 41 | 30, 39, 40 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 42 | 41 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 0) → ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 43 | | r19.2z 4495 |
. . . . . . . 8
⊢ ((ℕ
≠ ∅ ∧ ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 44 | 30, 42, 43 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 0) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 45 | 44 | ralrimivw 3150 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = 0) → ∀𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 46 | | r19.2z 4495 |
. . . . . 6
⊢ ((𝑅 ≠ ∅ ∧
∀𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 47 | 28, 45, 46 | syl2an2r 685 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = 0) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 48 | | rexex 3076 |
. . . . 5
⊢
(∃𝑐 ∈
𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 49 | 47, 48 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = 0) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 50 | 49, 47 | 2thd 265 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = 0) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 51 | | elnn0 12528 |
. . . 4
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
| 52 | 2, 51 | sylib 218 |
. . 3
⊢ (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
| 53 | 25, 50, 52 | mpjaodan 961 |
. 2
⊢ (𝜑 → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 54 | | vdwapval 17011 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝑎 ∈ ℕ
∧ 𝑑 ∈ ℕ)
→ (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)))) |
| 55 | 54 | 3expb 1121 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ (𝑎 ∈ ℕ
∧ 𝑑 ∈ ℕ))
→ (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)))) |
| 56 | 2, 55 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)))) |
| 57 | 56 | imbi1d 341 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})))) |
| 58 | 57 | albidv 1920 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})))) |
| 59 | | df-ss 3968 |
. . . . 5
⊢ ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
| 60 | | ralcom4 3286 |
. . . . . 6
⊢
(∀𝑚 ∈
(0...(𝐾 −
1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑥∀𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
| 61 | | ovex 7464 |
. . . . . . . 8
⊢ (𝑎 + (𝑚 · 𝑑)) ∈ V |
| 62 | | eleq1 2829 |
. . . . . . . 8
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
| 63 | 61, 62 | ceqsalv 3521 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
| 64 | 63 | ralbii 3093 |
. . . . . 6
⊢
(∀𝑚 ∈
(0...(𝐾 −
1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
| 65 | | r19.23v 3183 |
. . . . . . 7
⊢
(∀𝑚 ∈
(0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
| 66 | 65 | albii 1819 |
. . . . . 6
⊢
(∀𝑥∀𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
| 67 | 60, 64, 66 | 3bitr3i 301 |
. . . . 5
⊢
(∀𝑚 ∈
(0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
| 68 | 58, 59, 67 | 3bitr4g 314 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
| 69 | 68 | 2rexbidva 3220 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
| 70 | 69 | rexbidv 3179 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
| 71 | 4, 53, 70 | 3bitrd 305 |
1
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |