Step | Hyp | Ref
| Expression |
1 | | vdwmc.1 |
. . 3
⊢ 𝑋 ∈ V |
2 | | vdwmc.2 |
. . 3
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
3 | | vdwmc.3 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶𝑅) |
4 | 1, 2, 3 | vdwmc 16607 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
5 | | vdwapid1 16604 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑)) |
6 | 5 | ne0d 4266 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ≠ ∅) |
7 | 6 | 3expb 1118 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅) |
8 | 7 | adantll 710 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅) |
9 | | ssn0 4331 |
. . . . . . . . . 10
⊢ (((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ∧ (𝑎(AP‘𝐾)𝑑) ≠ ∅) → (◡𝐹 “ {𝑐}) ≠ ∅) |
10 | 9 | expcom 413 |
. . . . . . . . 9
⊢ ((𝑎(AP‘𝐾)𝑑) ≠ ∅ → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → (◡𝐹 “ {𝑐}) ≠ ∅)) |
11 | 8, 10 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → (◡𝐹 “ {𝑐}) ≠ ∅)) |
12 | | disjsn 4644 |
. . . . . . . . . 10
⊢ ((𝑅 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐 ∈ 𝑅) |
13 | 3 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → 𝐹:𝑋⟶𝑅) |
14 | | fimacnvdisj 6636 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶𝑅 ∧ (𝑅 ∩ {𝑐}) = ∅) → (◡𝐹 “ {𝑐}) = ∅) |
15 | 14 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶𝑅 → ((𝑅 ∩ {𝑐}) = ∅ → (◡𝐹 “ {𝑐}) = ∅)) |
16 | 13, 15 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → ((𝑅 ∩ {𝑐}) = ∅ → (◡𝐹 “ {𝑐}) = ∅)) |
17 | 16 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑅 ∩ {𝑐}) = ∅ → (◡𝐹 “ {𝑐}) = ∅)) |
18 | 12, 17 | syl5bir 242 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (¬ 𝑐 ∈ 𝑅 → (◡𝐹 “ {𝑐}) = ∅)) |
19 | 18 | necon1ad 2959 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((◡𝐹 “ {𝑐}) ≠ ∅ → 𝑐 ∈ 𝑅)) |
20 | 11, 19 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → 𝑐 ∈ 𝑅)) |
21 | 20 | rexlimdvva 3222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → 𝑐 ∈ 𝑅)) |
22 | 21 | pm4.71rd 562 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ (𝑐 ∈ 𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})))) |
23 | 22 | exbidv 1925 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐 ∈ 𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})))) |
24 | | df-rex 3069 |
. . . 4
⊢
(∃𝑐 ∈
𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐 ∈ 𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
25 | 23, 24 | bitr4di 288 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ ℕ) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
26 | | vdwmc2.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
27 | 3, 26 | ffvelrnd 6944 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑅) |
28 | 27 | ne0d 4266 |
. . . . . 6
⊢ (𝜑 → 𝑅 ≠ ∅) |
29 | | 1nn 11914 |
. . . . . . . . 9
⊢ 1 ∈
ℕ |
30 | 29 | ne0ii 4268 |
. . . . . . . 8
⊢ ℕ
≠ ∅ |
31 | | simpllr 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → 𝐾 = 0) |
32 | 31 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (AP‘𝐾) =
(AP‘0)) |
33 | 32 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = (𝑎(AP‘0)𝑑)) |
34 | | vdwap0 16605 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅) |
35 | 34 | adantll 710 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅) |
36 | 33, 35 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = ∅) |
37 | | 0ss 4327 |
. . . . . . . . . . . 12
⊢ ∅
⊆ (◡𝐹 “ {𝑐}) |
38 | 36, 37 | eqsstrdi 3971 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
39 | 38 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
40 | | r19.2z 4422 |
. . . . . . . . . 10
⊢ ((ℕ
≠ ∅ ∧ ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
41 | 30, 39, 40 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
42 | 41 | ralrimiva 3107 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 = 0) → ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
43 | | r19.2z 4422 |
. . . . . . . 8
⊢ ((ℕ
≠ ∅ ∧ ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
44 | 30, 42, 43 | sylancr 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 = 0) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
45 | 44 | ralrimivw 3108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 = 0) → ∀𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
46 | | r19.2z 4422 |
. . . . . 6
⊢ ((𝑅 ≠ ∅ ∧
∀𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
47 | 28, 45, 46 | syl2an2r 681 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 = 0) → ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
48 | | rexex 3167 |
. . . . 5
⊢
(∃𝑐 ∈
𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
49 | 47, 48 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 = 0) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
50 | 49, 47 | 2thd 264 |
. . 3
⊢ ((𝜑 ∧ 𝐾 = 0) → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
51 | | elnn0 12165 |
. . . 4
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
52 | 2, 51 | sylib 217 |
. . 3
⊢ (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
53 | 25, 50, 52 | mpjaodan 955 |
. 2
⊢ (𝜑 → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
54 | | vdwapval 16602 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝑎 ∈ ℕ
∧ 𝑑 ∈ ℕ)
→ (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)))) |
55 | 54 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ (𝑎 ∈ ℕ
∧ 𝑑 ∈ ℕ))
→ (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)))) |
56 | 2, 55 | sylan 579 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)))) |
57 | 56 | imbi1d 341 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})))) |
58 | 57 | albidv 1924 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})))) |
59 | | dfss2 3903 |
. . . . 5
⊢ ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
60 | | ralcom4 3161 |
. . . . . 6
⊢
(∀𝑚 ∈
(0...(𝐾 −
1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑥∀𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
61 | | ovex 7288 |
. . . . . . . 8
⊢ (𝑎 + (𝑚 · 𝑑)) ∈ V |
62 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
63 | 61, 62 | ceqsalv 3457 |
. . . . . . 7
⊢
(∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
64 | 63 | ralbii 3090 |
. . . . . 6
⊢
(∀𝑚 ∈
(0...(𝐾 −
1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐})) |
65 | | r19.23v 3207 |
. . . . . . 7
⊢
(∀𝑚 ∈
(0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
66 | 65 | albii 1823 |
. . . . . 6
⊢
(∀𝑥∀𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
67 | 60, 64, 66 | 3bitr3i 300 |
. . . . 5
⊢
(∀𝑚 ∈
(0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
68 | 58, 59, 67 | 3bitr4g 313 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
69 | 68 | 2rexbidva 3227 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
70 | 69 | rexbidv 3225 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |
71 | 4, 53, 70 | 3bitrd 304 |
1
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐 ∈ 𝑅 ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐹 “ {𝑐}))) |