![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shs00i | Structured version Visualization version GIF version |
Description: Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shne0.1 | ⊢ 𝐴 ∈ Sℋ |
shs00.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shs00i | ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) ↔ (𝐴 +ℋ 𝐵) = 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6979 | . . 3 ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) → (𝐴 +ℋ 𝐵) = (0ℋ +ℋ 0ℋ)) | |
2 | h0elsh 28802 | . . . 4 ⊢ 0ℋ ∈ Sℋ | |
3 | 2 | shs0i 28997 | . . 3 ⊢ (0ℋ +ℋ 0ℋ) = 0ℋ |
4 | 1, 3 | syl6eq 2824 | . 2 ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) → (𝐴 +ℋ 𝐵) = 0ℋ) |
5 | shne0.1 | . . . . . 6 ⊢ 𝐴 ∈ Sℋ | |
6 | shs00.2 | . . . . . 6 ⊢ 𝐵 ∈ Sℋ | |
7 | 5, 6 | shsub1i 28920 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 +ℋ 𝐵) |
8 | sseq2 3879 | . . . . 5 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → (𝐴 ⊆ (𝐴 +ℋ 𝐵) ↔ 𝐴 ⊆ 0ℋ)) | |
9 | 7, 8 | mpbii 225 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐴 ⊆ 0ℋ) |
10 | shle0 28990 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
11 | 5, 10 | ax-mp 5 | . . . 4 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
12 | 9, 11 | sylib 210 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐴 = 0ℋ) |
13 | 6, 5 | shsub2i 28921 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 +ℋ 𝐵) |
14 | sseq2 3879 | . . . . 5 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → (𝐵 ⊆ (𝐴 +ℋ 𝐵) ↔ 𝐵 ⊆ 0ℋ)) | |
15 | 13, 14 | mpbii 225 | . . . 4 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐵 ⊆ 0ℋ) |
16 | shle0 28990 | . . . . 5 ⊢ (𝐵 ∈ Sℋ → (𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ)) | |
17 | 6, 16 | ax-mp 5 | . . . 4 ⊢ (𝐵 ⊆ 0ℋ ↔ 𝐵 = 0ℋ) |
18 | 15, 17 | sylib 210 | . . 3 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → 𝐵 = 0ℋ) |
19 | 12, 18 | jca 504 | . 2 ⊢ ((𝐴 +ℋ 𝐵) = 0ℋ → (𝐴 = 0ℋ ∧ 𝐵 = 0ℋ)) |
20 | 4, 19 | impbii 201 | 1 ⊢ ((𝐴 = 0ℋ ∧ 𝐵 = 0ℋ) ↔ (𝐴 +ℋ 𝐵) = 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ⊆ wss 3825 (class class class)co 6970 Sℋ csh 28474 +ℋ cph 28477 0ℋc0h 28481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 ax-addf 10406 ax-mulf 10407 ax-hilex 28545 ax-hfvadd 28546 ax-hvcom 28547 ax-hvass 28548 ax-hv0cl 28549 ax-hvaddid 28550 ax-hfvmul 28551 ax-hvmulid 28552 ax-hvmulass 28553 ax-hvdistr1 28554 ax-hvdistr2 28555 ax-hvmul0 28556 ax-hfi 28625 ax-his1 28628 ax-his2 28629 ax-his3 28630 ax-his4 28631 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-map 8200 df-pm 8201 df-en 8299 df-dom 8300 df-sdom 8301 df-sup 8693 df-inf 8694 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-n0 11701 df-z 11787 df-uz 12052 df-q 12156 df-rp 12198 df-xneg 12317 df-xadd 12318 df-xmul 12319 df-icc 12554 df-seq 13178 df-exp 13238 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-topgen 16563 df-psmet 20229 df-xmet 20230 df-met 20231 df-bl 20232 df-mopn 20233 df-top 21196 df-topon 21213 df-bases 21248 df-lm 21531 df-haus 21617 df-grpo 28037 df-gid 28038 df-ginv 28039 df-gdiv 28040 df-ablo 28089 df-vc 28103 df-nv 28136 df-va 28139 df-ba 28140 df-sm 28141 df-0v 28142 df-vs 28143 df-nmcv 28144 df-ims 28145 df-hnorm 28514 df-hvsub 28517 df-hlim 28518 df-sh 28753 df-ch 28767 df-ch0 28799 df-shs 28856 df-span 28857 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |