HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shs00i Structured version   Visualization version   GIF version

Theorem shs00i 28998
Description: Two subspaces are zero iff their join is zero. (Contributed by NM, 7-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
shne0.1 𝐴S
shs00.2 𝐵S
Assertion
Ref Expression
shs00i ((𝐴 = 0𝐵 = 0) ↔ (𝐴 + 𝐵) = 0)

Proof of Theorem shs00i
StepHypRef Expression
1 oveq12 6979 . . 3 ((𝐴 = 0𝐵 = 0) → (𝐴 + 𝐵) = (0 + 0))
2 h0elsh 28802 . . . 4 0S
32shs0i 28997 . . 3 (0 + 0) = 0
41, 3syl6eq 2824 . 2 ((𝐴 = 0𝐵 = 0) → (𝐴 + 𝐵) = 0)
5 shne0.1 . . . . . 6 𝐴S
6 shs00.2 . . . . . 6 𝐵S
75, 6shsub1i 28920 . . . . 5 𝐴 ⊆ (𝐴 + 𝐵)
8 sseq2 3879 . . . . 5 ((𝐴 + 𝐵) = 0 → (𝐴 ⊆ (𝐴 + 𝐵) ↔ 𝐴 ⊆ 0))
97, 8mpbii 225 . . . 4 ((𝐴 + 𝐵) = 0𝐴 ⊆ 0)
10 shle0 28990 . . . . 5 (𝐴S → (𝐴 ⊆ 0𝐴 = 0))
115, 10ax-mp 5 . . . 4 (𝐴 ⊆ 0𝐴 = 0)
129, 11sylib 210 . . 3 ((𝐴 + 𝐵) = 0𝐴 = 0)
136, 5shsub2i 28921 . . . . 5 𝐵 ⊆ (𝐴 + 𝐵)
14 sseq2 3879 . . . . 5 ((𝐴 + 𝐵) = 0 → (𝐵 ⊆ (𝐴 + 𝐵) ↔ 𝐵 ⊆ 0))
1513, 14mpbii 225 . . . 4 ((𝐴 + 𝐵) = 0𝐵 ⊆ 0)
16 shle0 28990 . . . . 5 (𝐵S → (𝐵 ⊆ 0𝐵 = 0))
176, 16ax-mp 5 . . . 4 (𝐵 ⊆ 0𝐵 = 0)
1815, 17sylib 210 . . 3 ((𝐴 + 𝐵) = 0𝐵 = 0)
1912, 18jca 504 . 2 ((𝐴 + 𝐵) = 0 → (𝐴 = 0𝐵 = 0))
204, 19impbii 201 1 ((𝐴 = 0𝐵 = 0) ↔ (𝐴 + 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387   = wceq 1507  wcel 2048  wss 3825  (class class class)co 6970   S csh 28474   + cph 28477  0c0h 28481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405  ax-addf 10406  ax-mulf 10407  ax-hilex 28545  ax-hfvadd 28546  ax-hvcom 28547  ax-hvass 28548  ax-hv0cl 28549  ax-hvaddid 28550  ax-hfvmul 28551  ax-hvmulid 28552  ax-hvmulass 28553  ax-hvdistr1 28554  ax-hvdistr2 28555  ax-hvmul0 28556  ax-hfi 28625  ax-his1 28628  ax-his2 28629  ax-his3 28630  ax-his4 28631
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-map 8200  df-pm 8201  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-icc 12554  df-seq 13178  df-exp 13238  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-topgen 16563  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-top 21196  df-topon 21213  df-bases 21248  df-lm 21531  df-haus 21617  df-grpo 28037  df-gid 28038  df-ginv 28039  df-gdiv 28040  df-ablo 28089  df-vc 28103  df-nv 28136  df-va 28139  df-ba 28140  df-sm 28141  df-0v 28142  df-vs 28143  df-nmcv 28144  df-ims 28145  df-hnorm 28514  df-hvsub 28517  df-hlim 28518  df-sh 28753  df-ch 28767  df-ch0 28799  df-shs 28856  df-span 28857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator