![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > orthin | Structured version Visualization version GIF version |
Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
orthin | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4233 | . . . . . 6 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ ((⊥‘𝐵) ∩ 𝐵)) | |
2 | incom 4201 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐵)) | |
3 | 1, 2 | sseqtrdi 4032 | . . . . 5 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵))) |
4 | ocin 30817 | . . . . . 6 ⊢ (𝐵 ∈ Sℋ → (𝐵 ∩ (⊥‘𝐵)) = 0ℋ) | |
5 | 4 | sseq2d 4014 | . . . . 5 ⊢ (𝐵 ∈ Sℋ → ((𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)) ↔ (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
6 | 3, 5 | imbitrid 243 | . . . 4 ⊢ (𝐵 ∈ Sℋ → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
8 | shincl 30902 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | |
9 | sh0le 30961 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ Sℋ → 0ℋ ⊆ (𝐴 ∩ 𝐵)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℋ ⊆ (𝐴 ∩ 𝐵)) |
11 | 7, 10 | jctird 526 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵)))) |
12 | eqss 3997 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵))) | |
13 | 11, 12 | imbitrrdi 251 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 ⊆ wss 3948 ‘cfv 6543 Sℋ csh 30449 ⊥cort 30451 0ℋc0h 30456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-hilex 30520 ax-hfvadd 30521 ax-hv0cl 30524 ax-hfvmul 30526 ax-hvmul0 30531 ax-hfi 30600 ax-his2 30604 ax-his3 30605 ax-his4 30606 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-nn 12218 df-hlim 30493 df-sh 30728 df-ch 30742 df-oc 30773 df-ch0 30774 |
This theorem is referenced by: atomli 31903 chirredlem3 31913 |
Copyright terms: Public domain | W3C validator |