HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  orthin Structured version   Visualization version   GIF version

Theorem orthin 31427
Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
orthin ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) = 0))

Proof of Theorem orthin
StepHypRef Expression
1 ssrin 4217 . . . . . 6 (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ ((⊥‘𝐵) ∩ 𝐵))
2 incom 4184 . . . . . 6 ((⊥‘𝐵) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐵))
31, 2sseqtrdi 3999 . . . . 5 (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)))
4 ocin 31277 . . . . . 6 (𝐵S → (𝐵 ∩ (⊥‘𝐵)) = 0)
54sseq2d 3991 . . . . 5 (𝐵S → ((𝐴𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)) ↔ (𝐴𝐵) ⊆ 0))
63, 5imbitrid 244 . . . 4 (𝐵S → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ 0))
76adantl 481 . . 3 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ 0))
8 shincl 31362 . . . 4 ((𝐴S𝐵S ) → (𝐴𝐵) ∈ S )
9 sh0le 31421 . . . 4 ((𝐴𝐵) ∈ S → 0 ⊆ (𝐴𝐵))
108, 9syl 17 . . 3 ((𝐴S𝐵S ) → 0 ⊆ (𝐴𝐵))
117, 10jctird 526 . 2 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → ((𝐴𝐵) ⊆ 0 ∧ 0 ⊆ (𝐴𝐵))))
12 eqss 3974 . 2 ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) ⊆ 0 ∧ 0 ⊆ (𝐴𝐵)))
1311, 12imbitrrdi 252 1 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3925  wss 3926  cfv 6531   S csh 30909  cort 30911  0c0h 30916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-hilex 30980  ax-hfvadd 30981  ax-hv0cl 30984  ax-hfvmul 30986  ax-hvmul0 30991  ax-hfi 31060  ax-his2 31064  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-nn 12241  df-hlim 30953  df-sh 31188  df-ch 31202  df-oc 31233  df-ch0 31234
This theorem is referenced by:  atomli  32363  chirredlem3  32373
  Copyright terms: Public domain W3C validator