| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > orthin | Structured version Visualization version GIF version | ||
| Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| orthin | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4217 | . . . . . 6 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ ((⊥‘𝐵) ∩ 𝐵)) | |
| 2 | incom 4184 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐵)) | |
| 3 | 1, 2 | sseqtrdi 3999 | . . . . 5 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵))) |
| 4 | ocin 31277 | . . . . . 6 ⊢ (𝐵 ∈ Sℋ → (𝐵 ∩ (⊥‘𝐵)) = 0ℋ) | |
| 5 | 4 | sseq2d 3991 | . . . . 5 ⊢ (𝐵 ∈ Sℋ → ((𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)) ↔ (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
| 6 | 3, 5 | imbitrid 244 | . . . 4 ⊢ (𝐵 ∈ Sℋ → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
| 8 | shincl 31362 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | |
| 9 | sh0le 31421 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ Sℋ → 0ℋ ⊆ (𝐴 ∩ 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℋ ⊆ (𝐴 ∩ 𝐵)) |
| 11 | 7, 10 | jctird 526 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵)))) |
| 12 | eqss 3974 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵))) | |
| 13 | 11, 12 | imbitrrdi 252 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 ‘cfv 6531 Sℋ csh 30909 ⊥cort 30911 0ℋc0h 30916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-hilex 30980 ax-hfvadd 30981 ax-hv0cl 30984 ax-hfvmul 30986 ax-hvmul0 30991 ax-hfi 31060 ax-his2 31064 ax-his3 31065 ax-his4 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-nn 12241 df-hlim 30953 df-sh 31188 df-ch 31202 df-oc 31233 df-ch0 31234 |
| This theorem is referenced by: atomli 32363 chirredlem3 32373 |
| Copyright terms: Public domain | W3C validator |