HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  orthin Structured version   Visualization version   GIF version

Theorem orthin 29373
Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
orthin ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) = 0))

Proof of Theorem orthin
StepHypRef Expression
1 ssrin 4122 . . . . . 6 (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ ((⊥‘𝐵) ∩ 𝐵))
2 incom 4089 . . . . . 6 ((⊥‘𝐵) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐵))
31, 2sseqtrdi 3925 . . . . 5 (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)))
4 ocin 29223 . . . . . 6 (𝐵S → (𝐵 ∩ (⊥‘𝐵)) = 0)
54sseq2d 3907 . . . . 5 (𝐵S → ((𝐴𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)) ↔ (𝐴𝐵) ⊆ 0))
63, 5syl5ib 247 . . . 4 (𝐵S → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ 0))
76adantl 485 . . 3 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ 0))
8 shincl 29308 . . . 4 ((𝐴S𝐵S ) → (𝐴𝐵) ∈ S )
9 sh0le 29367 . . . 4 ((𝐴𝐵) ∈ S → 0 ⊆ (𝐴𝐵))
108, 9syl 17 . . 3 ((𝐴S𝐵S ) → 0 ⊆ (𝐴𝐵))
117, 10jctird 530 . 2 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → ((𝐴𝐵) ⊆ 0 ∧ 0 ⊆ (𝐴𝐵))))
12 eqss 3890 . 2 ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) ⊆ 0 ∧ 0 ⊆ (𝐴𝐵)))
1311, 12syl6ibr 255 1 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  cin 3840  wss 3841  cfv 6333   S csh 28855  cort 28857  0c0h 28862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-hilex 28926  ax-hfvadd 28927  ax-hv0cl 28930  ax-hfvmul 28932  ax-hvmul0 28937  ax-hfi 29006  ax-his2 29010  ax-his3 29011  ax-his4 29012
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-ltxr 10751  df-nn 11710  df-hlim 28899  df-sh 29134  df-ch 29148  df-oc 29179  df-ch0 29180
This theorem is referenced by:  atomli  30309  chirredlem3  30319
  Copyright terms: Public domain W3C validator