HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  orthin Structured version   Visualization version   GIF version

Theorem orthin 31408
Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
orthin ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) = 0))

Proof of Theorem orthin
StepHypRef Expression
1 ssrin 4195 . . . . . 6 (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ ((⊥‘𝐵) ∩ 𝐵))
2 incom 4162 . . . . . 6 ((⊥‘𝐵) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐵))
31, 2sseqtrdi 3978 . . . . 5 (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)))
4 ocin 31258 . . . . . 6 (𝐵S → (𝐵 ∩ (⊥‘𝐵)) = 0)
54sseq2d 3970 . . . . 5 (𝐵S → ((𝐴𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)) ↔ (𝐴𝐵) ⊆ 0))
63, 5imbitrid 244 . . . 4 (𝐵S → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ 0))
76adantl 481 . . 3 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) ⊆ 0))
8 shincl 31343 . . . 4 ((𝐴S𝐵S ) → (𝐴𝐵) ∈ S )
9 sh0le 31402 . . . 4 ((𝐴𝐵) ∈ S → 0 ⊆ (𝐴𝐵))
108, 9syl 17 . . 3 ((𝐴S𝐵S ) → 0 ⊆ (𝐴𝐵))
117, 10jctird 526 . 2 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → ((𝐴𝐵) ⊆ 0 ∧ 0 ⊆ (𝐴𝐵))))
12 eqss 3953 . 2 ((𝐴𝐵) = 0 ↔ ((𝐴𝐵) ⊆ 0 ∧ 0 ⊆ (𝐴𝐵)))
1311, 12imbitrrdi 252 1 ((𝐴S𝐵S ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3904  wss 3905  cfv 6486   S csh 30890  cort 30892  0c0h 30897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-hilex 30961  ax-hfvadd 30962  ax-hv0cl 30965  ax-hfvmul 30967  ax-hvmul0 30972  ax-hfi 31041  ax-his2 31045  ax-his3 31046  ax-his4 31047
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-nn 12147  df-hlim 30934  df-sh 31169  df-ch 31183  df-oc 31214  df-ch0 31215
This theorem is referenced by:  atomli  32344  chirredlem3  32354
  Copyright terms: Public domain W3C validator