| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > orthin | Structured version Visualization version GIF version | ||
| Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| orthin | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4187 | . . . . . 6 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ ((⊥‘𝐵) ∩ 𝐵)) | |
| 2 | incom 4154 | . . . . . 6 ⊢ ((⊥‘𝐵) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐵)) | |
| 3 | 1, 2 | sseqtrdi 3970 | . . . . 5 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵))) |
| 4 | ocin 31268 | . . . . . 6 ⊢ (𝐵 ∈ Sℋ → (𝐵 ∩ (⊥‘𝐵)) = 0ℋ) | |
| 5 | 4 | sseq2d 3962 | . . . . 5 ⊢ (𝐵 ∈ Sℋ → ((𝐴 ∩ 𝐵) ⊆ (𝐵 ∩ (⊥‘𝐵)) ↔ (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
| 6 | 3, 5 | imbitrid 244 | . . . 4 ⊢ (𝐵 ∈ Sℋ → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) ⊆ 0ℋ)) |
| 8 | shincl 31353 | . . . 4 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) | |
| 9 | sh0le 31412 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ Sℋ → 0ℋ ⊆ (𝐴 ∩ 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → 0ℋ ⊆ (𝐴 ∩ 𝐵)) |
| 11 | 7, 10 | jctird 526 | . 2 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵)))) |
| 12 | eqss 3945 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 0ℋ ↔ ((𝐴 ∩ 𝐵) ⊆ 0ℋ ∧ 0ℋ ⊆ (𝐴 ∩ 𝐵))) | |
| 13 | 11, 12 | imbitrrdi 252 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ⊆ (⊥‘𝐵) → (𝐴 ∩ 𝐵) = 0ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ‘cfv 6476 Sℋ csh 30900 ⊥cort 30902 0ℋc0h 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-hilex 30971 ax-hfvadd 30972 ax-hv0cl 30975 ax-hfvmul 30977 ax-hvmul0 30982 ax-hfi 31051 ax-his2 31055 ax-his3 31056 ax-his4 31057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-nn 12121 df-hlim 30944 df-sh 31179 df-ch 31193 df-oc 31224 df-ch0 31225 |
| This theorem is referenced by: atomli 32354 chirredlem3 32364 |
| Copyright terms: Public domain | W3C validator |