HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chel Structured version   Visualization version   GIF version

Theorem chel 31210
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chel ((𝐻C𝐴𝐻) → 𝐴 ∈ ℋ)

Proof of Theorem chel
StepHypRef Expression
1 chss 31209 . 2 (𝐻C𝐻 ⊆ ℋ)
21sselda 3929 1 ((𝐻C𝐴𝐻) → 𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  chba 30899   C cch 30909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-hilex 30979
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fv 6489  df-ov 7349  df-sh 31187  df-ch 31201
This theorem is referenced by:  pjhtheu2  31396  pjspansn  31557  pjid  31675  atom1d  32333  sumdmdii  32395
  Copyright terms: Public domain W3C validator