| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chel | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chel | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chss 31209 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) | |
| 2 | 1 | sselda 3929 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ℋchba 30899 Cℋ cch 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-hilex 30979 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 df-ov 7349 df-sh 31187 df-ch 31201 |
| This theorem is referenced by: pjhtheu2 31396 pjspansn 31557 pjid 31675 atom1d 32333 sumdmdii 32395 |
| Copyright terms: Public domain | W3C validator |