HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chel Structured version   Visualization version   GIF version

Theorem chel 29592
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chel ((𝐻C𝐴𝐻) → 𝐴 ∈ ℋ)

Proof of Theorem chel
StepHypRef Expression
1 chss 29591 . 2 (𝐻C𝐻 ⊆ ℋ)
21sselda 3921 1 ((𝐻C𝐴𝐻) → 𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  chba 29281   C cch 29291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fv 6441  df-ov 7278  df-sh 29569  df-ch 29583
This theorem is referenced by:  pjhtheu2  29778  pjspansn  29939  pjid  30057  atom1d  30715  sumdmdii  30777
  Copyright terms: Public domain W3C validator