HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chel Structured version   Visualization version   GIF version

Theorem chel 31196
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chel ((𝐻C𝐴𝐻) → 𝐴 ∈ ℋ)

Proof of Theorem chel
StepHypRef Expression
1 chss 31195 . 2 (𝐻C𝐻 ⊆ ℋ)
21sselda 3965 1 ((𝐻C𝐴𝐻) → 𝐴 ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  chba 30885   C cch 30895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-hilex 30965
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fv 6550  df-ov 7417  df-sh 31173  df-ch 31187
This theorem is referenced by:  pjhtheu2  31382  pjspansn  31543  pjid  31661  atom1d  32319  sumdmdii  32381
  Copyright terms: Public domain W3C validator