| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chel | Structured version Visualization version GIF version | ||
| Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chel | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chss 31173 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) | |
| 2 | 1 | sselda 3935 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ 𝐻) → 𝐴 ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ℋchba 30863 Cℋ cch 30873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 df-ov 7352 df-sh 31151 df-ch 31165 |
| This theorem is referenced by: pjhtheu2 31360 pjspansn 31521 pjid 31639 atom1d 32297 sumdmdii 32359 |
| Copyright terms: Public domain | W3C validator |