| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chss | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chss | ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31199 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 2 | shss 31185 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 ℋchba 30894 Sℋ csh 30903 Cℋ cch 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fv 6489 df-ov 7349 df-sh 31182 df-ch 31196 |
| This theorem is referenced by: chel 31205 pjhcl 31376 dfch2 31382 shlub 31389 chsscon2 31477 chscllem2 31613 pjvec 31671 pjocvec 31672 pjhf 31683 elpjrn 32165 |
| Copyright terms: Public domain | W3C validator |