HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chss Structured version   Visualization version   GIF version

Theorem chss 31191
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
chss (𝐻C𝐻 ⊆ ℋ)

Proof of Theorem chss
StepHypRef Expression
1 chsh 31186 . 2 (𝐻C𝐻S )
2 shss 31172 . 2 (𝐻S𝐻 ⊆ ℋ)
31, 2syl 17 1 (𝐻C𝐻 ⊆ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3905  chba 30881   S csh 30890   C cch 30891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-hilex 30961
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fv 6494  df-ov 7356  df-sh 31169  df-ch 31183
This theorem is referenced by:  chel  31192  pjhcl  31363  dfch2  31369  shlub  31376  chsscon2  31464  chscllem2  31600  pjvec  31658  pjocvec  31659  pjhf  31670  elpjrn  32152
  Copyright terms: Public domain W3C validator