HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chss Structured version   Visualization version   GIF version

Theorem chss 30469
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
chss (𝐻C𝐻 ⊆ ℋ)

Proof of Theorem chss
StepHypRef Expression
1 chsh 30464 . 2 (𝐻C𝐻S )
2 shss 30450 . 2 (𝐻S𝐻 ⊆ ℋ)
31, 2syl 17 1 (𝐻C𝐻 ⊆ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wss 3947  chba 30159   S csh 30168   C cch 30169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-hilex 30239
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fv 6548  df-ov 7408  df-sh 30447  df-ch 30461
This theorem is referenced by:  chel  30470  pjhcl  30641  dfch2  30647  shlub  30654  chsscon2  30742  chscllem2  30878  pjvec  30936  pjocvec  30937  pjhf  30948  elpjrn  31430
  Copyright terms: Public domain W3C validator