HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chss Structured version   Visualization version   GIF version

Theorem chss 31204
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.)
Assertion
Ref Expression
chss (𝐻C𝐻 ⊆ ℋ)

Proof of Theorem chss
StepHypRef Expression
1 chsh 31199 . 2 (𝐻C𝐻S )
2 shss 31185 . 2 (𝐻S𝐻 ⊆ ℋ)
31, 2syl 17 1 (𝐻C𝐻 ⊆ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wss 3902  chba 30894   S csh 30903   C cch 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-hilex 30974
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-xp 5622  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fv 6489  df-ov 7349  df-sh 31182  df-ch 31196
This theorem is referenced by:  chel  31205  pjhcl  31376  dfch2  31382  shlub  31389  chsscon2  31477  chscllem2  31613  pjvec  31671  pjocvec  31672  pjhf  31683  elpjrn  32165
  Copyright terms: Public domain W3C validator