MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglble Structured version   Visualization version   GIF version

Theorem clatglble 18150
Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
clatglb.b 𝐵 = (Base‘𝐾)
clatglb.l = (le‘𝐾)
clatglb.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglble ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → (𝐺𝑆) 𝑋)

Proof of Theorem clatglble
StepHypRef Expression
1 clatglb.b . 2 𝐵 = (Base‘𝐾)
2 clatglb.l . 2 = (le‘𝐾)
3 clatglb.g . 2 𝐺 = (glb‘𝐾)
4 simp1 1134 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝐾 ∈ CLat)
51, 3clatglbcl2 18139 . . 3 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
653adant3 1130 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑆 ∈ dom 𝐺)
7 simp3 1136 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → 𝑋𝑆)
81, 2, 3, 4, 6, 7glble 18005 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵𝑋𝑆) → (𝐺𝑆) 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  dom cdm 5580  cfv 6418  Basecbs 16840  lecple 16895  glbcglb 17943  CLatccla 18131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-glb 17980  df-clat 18132
This theorem is referenced by:  clatleglb  18151  clatglbss  18152  diaglbN  38996  diaintclN  38999  dibglbN  39107  dibintclN  39108  dihglblem2N  39235  dihglblem4  39238  dihglbcpreN  39241  dochvalr  39298
  Copyright terms: Public domain W3C validator