![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglble | Structured version Visualization version GIF version |
Description: The greatest lower bound is the least element. (Contributed by NM, 5-Dec-2011.) |
Ref | Expression |
---|---|
clatglb.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglb.l | ⊢ ≤ = (le‘𝐾) |
clatglb.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglble | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑆) ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglb.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | clatglb.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | clatglb.g | . 2 ⊢ 𝐺 = (glb‘𝐾) | |
4 | simp1 1167 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝐾 ∈ CLat) | |
5 | 1, 3 | clatglbcl2 17430 | . . 3 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
6 | 5 | 3adant3 1163 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑆 ∈ dom 𝐺) |
7 | simp3 1169 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 6, 7 | glble 17315 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝐺‘𝑆) ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 class class class wbr 4843 dom cdm 5312 ‘cfv 6101 Basecbs 16184 lecple 16274 glbcglb 17258 CLatccla 17422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-glb 17290 df-clat 17423 |
This theorem is referenced by: clatleglb 17441 clatglbss 17442 diaglbN 37076 diaintclN 37079 dibglbN 37187 dibintclN 37188 dihglblem2N 37315 dihglblem4 37318 dihglbcpreN 37321 dochvalr 37378 |
Copyright terms: Public domain | W3C validator |