![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglb | Structured version Visualization version GIF version |
Description: Properties of greatest lower bound of a complete lattice. (Contributed by NM, 5-Dec-2011.) |
Ref | Expression |
---|---|
clatglb.b | β’ π΅ = (BaseβπΎ) |
clatglb.l | β’ β€ = (leβπΎ) |
clatglb.g | β’ πΊ = (glbβπΎ) |
Ref | Expression |
---|---|
clatglb | β’ ((πΎ β CLat β§ π β π΅) β (βπ¦ β π (πΊβπ) β€ π¦ β§ βπ§ β π΅ (βπ¦ β π π§ β€ π¦ β π§ β€ (πΊβπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglb.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | clatglb.l | . 2 β’ β€ = (leβπΎ) | |
3 | clatglb.g | . 2 β’ πΊ = (glbβπΎ) | |
4 | simpl 482 | . 2 β’ ((πΎ β CLat β§ π β π΅) β πΎ β CLat) | |
5 | 1, 3 | clatglbcl2 18469 | . 2 β’ ((πΎ β CLat β§ π β π΅) β π β dom πΊ) |
6 | 1, 2, 3, 4, 5 | glbprop 18334 | 1 β’ ((πΎ β CLat β§ π β π΅) β (βπ¦ β π (πΊβπ) β€ π¦ β§ βπ§ β π΅ (βπ¦ β π π§ β€ π¦ β π§ β€ (πΊβπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β wss 3948 class class class wbr 5148 βcfv 6543 Basecbs 17151 lecple 17211 glbcglb 18273 CLatccla 18461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-glb 18310 df-clat 18462 |
This theorem is referenced by: clatleglb 18481 |
Copyright terms: Public domain | W3C validator |