MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isglbd Structured version   Visualization version   GIF version

Theorem isglbd 18466
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.)
Hypotheses
Ref Expression
isglbd.b 𝐵 = (Base‘𝐾)
isglbd.l = (le‘𝐾)
isglbd.g 𝐺 = (glb‘𝐾)
isglbd.1 ((𝜑𝑦𝑆) → 𝐻 𝑦)
isglbd.2 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
isglbd.3 (𝜑𝐾 ∈ CLat)
isglbd.4 (𝜑𝑆𝐵)
isglbd.5 (𝜑𝐻𝐵)
Assertion
Ref Expression
isglbd (𝜑 → (𝐺𝑆) = 𝐻)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isglbd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 isglbd.b . . 3 𝐵 = (Base‘𝐾)
2 isglbd.l . . 3 = (le‘𝐾)
3 isglbd.g . . 3 𝐺 = (glb‘𝐾)
4 biid 261 . . 3 ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
5 isglbd.3 . . 3 (𝜑𝐾 ∈ CLat)
6 isglbd.4 . . 3 (𝜑𝑆𝐵)
71, 2, 3, 4, 5, 6glbval 18326 . 2 (𝜑 → (𝐺𝑆) = (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))))
8 isglbd.1 . . . 4 ((𝜑𝑦𝑆) → 𝐻 𝑦)
98ralrimiva 3138 . . 3 (𝜑 → ∀𝑦𝑆 𝐻 𝑦)
10 isglbd.2 . . . . 5 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
11103exp 1116 . . . 4 (𝜑 → (𝑥𝐵 → (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
1211ralrimiv 3137 . . 3 (𝜑 → ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))
13 isglbd.5 . . . 4 (𝜑𝐻𝐵)
141, 3clatglbcl2 18463 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
155, 6, 14syl2anc 583 . . . . 5 (𝜑𝑆 ∈ dom 𝐺)
161, 2, 3, 4, 5, 15glbeu 18325 . . . 4 (𝜑 → ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
17 breq1 5142 . . . . . . 7 ( = 𝐻 → ( 𝑦𝐻 𝑦))
1817ralbidv 3169 . . . . . 6 ( = 𝐻 → (∀𝑦𝑆 𝑦 ↔ ∀𝑦𝑆 𝐻 𝑦))
19 breq2 5143 . . . . . . . 8 ( = 𝐻 → (𝑥 𝑥 𝐻))
2019imbi2d 340 . . . . . . 7 ( = 𝐻 → ((∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2120ralbidv 3169 . . . . . 6 ( = 𝐻 → (∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2218, 21anbi12d 630 . . . . 5 ( = 𝐻 → ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))))
2322riota2 7384 . . . 4 ((𝐻𝐵 ∧ ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
2413, 16, 23syl2anc 583 . . 3 (𝜑 → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
259, 12, 24mpbi2and 709 . 2 (𝜑 → (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻)
267, 25eqtrd 2764 1 (𝜑 → (𝐺𝑆) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  ∃!wreu 3366  wss 3941   class class class wbr 5139  dom cdm 5667  cfv 6534  crio 7357  Basecbs 17145  lecple 17205  glbcglb 18267  CLatccla 18455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-glb 18304  df-clat 18456
This theorem is referenced by:  dihglblem2N  40659
  Copyright terms: Public domain W3C validator