MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isglbd Structured version   Visualization version   GIF version

Theorem isglbd 17503
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.)
Hypotheses
Ref Expression
isglbd.b 𝐵 = (Base‘𝐾)
isglbd.l = (le‘𝐾)
isglbd.g 𝐺 = (glb‘𝐾)
isglbd.1 ((𝜑𝑦𝑆) → 𝐻 𝑦)
isglbd.2 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
isglbd.3 (𝜑𝐾 ∈ CLat)
isglbd.4 (𝜑𝑆𝐵)
isglbd.5 (𝜑𝐻𝐵)
Assertion
Ref Expression
isglbd (𝜑 → (𝐺𝑆) = 𝐻)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isglbd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 isglbd.b . . 3 𝐵 = (Base‘𝐾)
2 isglbd.l . . 3 = (le‘𝐾)
3 isglbd.g . . 3 𝐺 = (glb‘𝐾)
4 biid 253 . . 3 ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
5 isglbd.3 . . 3 (𝜑𝐾 ∈ CLat)
6 isglbd.4 . . 3 (𝜑𝑆𝐵)
71, 2, 3, 4, 5, 6glbval 17383 . 2 (𝜑 → (𝐺𝑆) = (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))))
8 isglbd.1 . . . 4 ((𝜑𝑦𝑆) → 𝐻 𝑦)
98ralrimiva 3147 . . 3 (𝜑 → ∀𝑦𝑆 𝐻 𝑦)
10 isglbd.2 . . . . 5 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
11103exp 1109 . . . 4 (𝜑 → (𝑥𝐵 → (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
1211ralrimiv 3146 . . 3 (𝜑 → ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))
13 isglbd.5 . . . 4 (𝜑𝐻𝐵)
141, 3clatglbcl2 17501 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
155, 6, 14syl2anc 579 . . . . 5 (𝜑𝑆 ∈ dom 𝐺)
161, 2, 3, 4, 5, 15glbeu 17382 . . . 4 (𝜑 → ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
17 breq1 4889 . . . . . . 7 ( = 𝐻 → ( 𝑦𝐻 𝑦))
1817ralbidv 3167 . . . . . 6 ( = 𝐻 → (∀𝑦𝑆 𝑦 ↔ ∀𝑦𝑆 𝐻 𝑦))
19 breq2 4890 . . . . . . . 8 ( = 𝐻 → (𝑥 𝑥 𝐻))
2019imbi2d 332 . . . . . . 7 ( = 𝐻 → ((∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2120ralbidv 3167 . . . . . 6 ( = 𝐻 → (∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2218, 21anbi12d 624 . . . . 5 ( = 𝐻 → ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))))
2322riota2 6905 . . . 4 ((𝐻𝐵 ∧ ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
2413, 16, 23syl2anc 579 . . 3 (𝜑 → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
259, 12, 24mpbi2and 702 . 2 (𝜑 → (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻)
267, 25eqtrd 2813 1 (𝜑 → (𝐺𝑆) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2106  wral 3089  ∃!wreu 3091  wss 3791   class class class wbr 4886  dom cdm 5355  cfv 6135  crio 6882  Basecbs 16255  lecple 16345  glbcglb 17329  CLatccla 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-glb 17361  df-clat 17494
This theorem is referenced by:  dihglblem2N  37432
  Copyright terms: Public domain W3C validator