Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isglbd | Structured version Visualization version GIF version |
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
isglbd.b | ⊢ 𝐵 = (Base‘𝐾) |
isglbd.l | ⊢ ≤ = (le‘𝐾) |
isglbd.g | ⊢ 𝐺 = (glb‘𝐾) |
isglbd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) |
isglbd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) |
isglbd.3 | ⊢ (𝜑 → 𝐾 ∈ CLat) |
isglbd.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
isglbd.5 | ⊢ (𝜑 → 𝐻 ∈ 𝐵) |
Ref | Expression |
---|---|
isglbd | ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isglbd.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isglbd.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | isglbd.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | biid 260 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) | |
5 | isglbd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ CLat) | |
6 | isglbd.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | glbval 18087 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)))) |
8 | isglbd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) | |
9 | 8 | ralrimiva 3103 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦) |
10 | isglbd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) | |
11 | 10 | 3exp 1118 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
12 | 11 | ralrimiv 3102 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) |
13 | isglbd.5 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐵) | |
14 | 1, 3 | clatglbcl2 18224 | . . . . . 6 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
15 | 5, 6, 14 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
16 | 1, 2, 3, 4, 5, 15 | glbeu 18086 | . . . 4 ⊢ (𝜑 → ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) |
17 | breq1 5077 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (ℎ ≤ 𝑦 ↔ 𝐻 ≤ 𝑦)) | |
18 | 17 | ralbidv 3112 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦)) |
19 | breq2 5078 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → (𝑥 ≤ ℎ ↔ 𝑥 ≤ 𝐻)) | |
20 | 19 | imbi2d 341 | . . . . . . 7 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
21 | 20 | ralbidv 3112 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
22 | 18, 21 | anbi12d 631 | . . . . 5 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)))) |
23 | 22 | riota2 7258 | . . . 4 ⊢ ((𝐻 ∈ 𝐵 ∧ ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
24 | 13, 16, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
25 | 9, 12, 24 | mpbi2and 709 | . 2 ⊢ (𝜑 → (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻) |
26 | 7, 25 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 ℩crio 7231 Basecbs 16912 lecple 16969 glbcglb 18028 CLatccla 18216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-glb 18065 df-clat 18217 |
This theorem is referenced by: dihglblem2N 39308 |
Copyright terms: Public domain | W3C validator |