![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isglbd | Structured version Visualization version GIF version |
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
isglbd.b | ⊢ 𝐵 = (Base‘𝐾) |
isglbd.l | ⊢ ≤ = (le‘𝐾) |
isglbd.g | ⊢ 𝐺 = (glb‘𝐾) |
isglbd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) |
isglbd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) |
isglbd.3 | ⊢ (𝜑 → 𝐾 ∈ CLat) |
isglbd.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
isglbd.5 | ⊢ (𝜑 → 𝐻 ∈ 𝐵) |
Ref | Expression |
---|---|
isglbd | ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isglbd.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isglbd.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | isglbd.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) | |
5 | isglbd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ CLat) | |
6 | isglbd.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | glbval 18326 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)))) |
8 | isglbd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) | |
9 | 8 | ralrimiva 3138 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦) |
10 | isglbd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) | |
11 | 10 | 3exp 1116 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
12 | 11 | ralrimiv 3137 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) |
13 | isglbd.5 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐵) | |
14 | 1, 3 | clatglbcl2 18463 | . . . . . 6 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
15 | 5, 6, 14 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
16 | 1, 2, 3, 4, 5, 15 | glbeu 18325 | . . . 4 ⊢ (𝜑 → ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) |
17 | breq1 5142 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (ℎ ≤ 𝑦 ↔ 𝐻 ≤ 𝑦)) | |
18 | 17 | ralbidv 3169 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦)) |
19 | breq2 5143 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → (𝑥 ≤ ℎ ↔ 𝑥 ≤ 𝐻)) | |
20 | 19 | imbi2d 340 | . . . . . . 7 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
21 | 20 | ralbidv 3169 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
22 | 18, 21 | anbi12d 630 | . . . . 5 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)))) |
23 | 22 | riota2 7384 | . . . 4 ⊢ ((𝐻 ∈ 𝐵 ∧ ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
24 | 13, 16, 23 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
25 | 9, 12, 24 | mpbi2and 709 | . 2 ⊢ (𝜑 → (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻) |
26 | 7, 25 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃!wreu 3366 ⊆ wss 3941 class class class wbr 5139 dom cdm 5667 ‘cfv 6534 ℩crio 7357 Basecbs 17145 lecple 17205 glbcglb 18267 CLatccla 18455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-glb 18304 df-clat 18456 |
This theorem is referenced by: dihglblem2N 40659 |
Copyright terms: Public domain | W3C validator |