MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isglbd Structured version   Visualization version   GIF version

Theorem isglbd 18227
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.)
Hypotheses
Ref Expression
isglbd.b 𝐵 = (Base‘𝐾)
isglbd.l = (le‘𝐾)
isglbd.g 𝐺 = (glb‘𝐾)
isglbd.1 ((𝜑𝑦𝑆) → 𝐻 𝑦)
isglbd.2 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
isglbd.3 (𝜑𝐾 ∈ CLat)
isglbd.4 (𝜑𝑆𝐵)
isglbd.5 (𝜑𝐻𝐵)
Assertion
Ref Expression
isglbd (𝜑 → (𝐺𝑆) = 𝐻)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐻   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐺(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isglbd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 isglbd.b . . 3 𝐵 = (Base‘𝐾)
2 isglbd.l . . 3 = (le‘𝐾)
3 isglbd.g . . 3 𝐺 = (glb‘𝐾)
4 biid 260 . . 3 ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
5 isglbd.3 . . 3 (𝜑𝐾 ∈ CLat)
6 isglbd.4 . . 3 (𝜑𝑆𝐵)
71, 2, 3, 4, 5, 6glbval 18087 . 2 (𝜑 → (𝐺𝑆) = (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))))
8 isglbd.1 . . . 4 ((𝜑𝑦𝑆) → 𝐻 𝑦)
98ralrimiva 3103 . . 3 (𝜑 → ∀𝑦𝑆 𝐻 𝑦)
10 isglbd.2 . . . . 5 ((𝜑𝑥𝐵 ∧ ∀𝑦𝑆 𝑥 𝑦) → 𝑥 𝐻)
11103exp 1118 . . . 4 (𝜑 → (𝑥𝐵 → (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
1211ralrimiv 3102 . . 3 (𝜑 → ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))
13 isglbd.5 . . . 4 (𝜑𝐻𝐵)
141, 3clatglbcl2 18224 . . . . . 6 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝐺)
155, 6, 14syl2anc 584 . . . . 5 (𝜑𝑆 ∈ dom 𝐺)
161, 2, 3, 4, 5, 15glbeu 18086 . . . 4 (𝜑 → ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )))
17 breq1 5077 . . . . . . 7 ( = 𝐻 → ( 𝑦𝐻 𝑦))
1817ralbidv 3112 . . . . . 6 ( = 𝐻 → (∀𝑦𝑆 𝑦 ↔ ∀𝑦𝑆 𝐻 𝑦))
19 breq2 5078 . . . . . . . 8 ( = 𝐻 → (𝑥 𝑥 𝐻))
2019imbi2d 341 . . . . . . 7 ( = 𝐻 → ((∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2120ralbidv 3112 . . . . . 6 ( = 𝐻 → (∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ) ↔ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)))
2218, 21anbi12d 631 . . . . 5 ( = 𝐻 → ((∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 )) ↔ (∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻))))
2322riota2 7258 . . . 4 ((𝐻𝐵 ∧ ∃!𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
2413, 16, 23syl2anc 584 . . 3 (𝜑 → ((∀𝑦𝑆 𝐻 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 𝐻)) ↔ (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻))
259, 12, 24mpbi2and 709 . 2 (𝜑 → (𝐵 (∀𝑦𝑆 𝑦 ∧ ∀𝑥𝐵 (∀𝑦𝑆 𝑥 𝑦𝑥 ))) = 𝐻)
267, 25eqtrd 2778 1 (𝜑 → (𝐺𝑆) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  wss 3887   class class class wbr 5074  dom cdm 5589  cfv 6433  crio 7231  Basecbs 16912  lecple 16969  glbcglb 18028  CLatccla 18216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-glb 18065  df-clat 18217
This theorem is referenced by:  dihglblem2N  39308
  Copyright terms: Public domain W3C validator