![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isglbd | Structured version Visualization version GIF version |
Description: Properties that determine the greatest lower bound of a complete lattice. (Contributed by Mario Carneiro, 19-Mar-2014.) |
Ref | Expression |
---|---|
isglbd.b | ⊢ 𝐵 = (Base‘𝐾) |
isglbd.l | ⊢ ≤ = (le‘𝐾) |
isglbd.g | ⊢ 𝐺 = (glb‘𝐾) |
isglbd.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) |
isglbd.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) |
isglbd.3 | ⊢ (𝜑 → 𝐾 ∈ CLat) |
isglbd.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
isglbd.5 | ⊢ (𝜑 → 𝐻 ∈ 𝐵) |
Ref | Expression |
---|---|
isglbd | ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isglbd.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | isglbd.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | isglbd.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | biid 253 | . . 3 ⊢ ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) | |
5 | isglbd.3 | . . 3 ⊢ (𝜑 → 𝐾 ∈ CLat) | |
6 | isglbd.4 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | glbval 17383 | . 2 ⊢ (𝜑 → (𝐺‘𝑆) = (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)))) |
8 | isglbd.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑆) → 𝐻 ≤ 𝑦) | |
9 | 8 | ralrimiva 3147 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦) |
10 | isglbd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝐻) | |
11 | 10 | 3exp 1109 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
12 | 11 | ralrimiv 3146 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) |
13 | isglbd.5 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ 𝐵) | |
14 | 1, 3 | clatglbcl2 17501 | . . . . . 6 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝐺) |
15 | 5, 6, 14 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) |
16 | 1, 2, 3, 4, 5, 15 | glbeu 17382 | . . . 4 ⊢ (𝜑 → ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) |
17 | breq1 4889 | . . . . . . 7 ⊢ (ℎ = 𝐻 → (ℎ ≤ 𝑦 ↔ 𝐻 ≤ 𝑦)) | |
18 | 17 | ralbidv 3167 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦)) |
19 | breq2 4890 | . . . . . . . 8 ⊢ (ℎ = 𝐻 → (𝑥 ≤ ℎ ↔ 𝑥 ≤ 𝐻)) | |
20 | 19 | imbi2d 332 | . . . . . . 7 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
21 | 20 | ralbidv 3167 | . . . . . 6 ⊢ (ℎ = 𝐻 → (∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ) ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻))) |
22 | 18, 21 | anbi12d 624 | . . . . 5 ⊢ (ℎ = 𝐻 → ((∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ)) ↔ (∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)))) |
23 | 22 | riota2 6905 | . . . 4 ⊢ ((𝐻 ∈ 𝐵 ∧ ∃!ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
24 | 13, 16, 23 | syl2anc 579 | . . 3 ⊢ (𝜑 → ((∀𝑦 ∈ 𝑆 𝐻 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝐻)) ↔ (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻)) |
25 | 9, 12, 24 | mpbi2and 702 | . 2 ⊢ (𝜑 → (℩ℎ ∈ 𝐵 (∀𝑦 ∈ 𝑆 ℎ ≤ 𝑦 ∧ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ ℎ))) = 𝐻) |
26 | 7, 25 | eqtrd 2813 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 ∀wral 3089 ∃!wreu 3091 ⊆ wss 3791 class class class wbr 4886 dom cdm 5355 ‘cfv 6135 ℩crio 6882 Basecbs 16255 lecple 16345 glbcglb 17329 CLatccla 17493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-glb 17361 df-clat 17494 |
This theorem is referenced by: dihglblem2N 37432 |
Copyright terms: Public domain | W3C validator |