MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimassrndm Structured version   Visualization version   GIF version

Theorem cnvimassrndm 6070
Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6000 for subsets. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
cnvimassrndm (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)

Proof of Theorem cnvimassrndm
StepHypRef Expression
1 ssequn1 4120 . 2 (ran 𝐹𝐴 ↔ (ran 𝐹𝐴) = 𝐴)
2 imaeq2 5975 . . . . 5 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = (𝐹 “ (ran 𝐹𝐴)))
3 imaundi 6068 . . . . 5 (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴))
42, 3eqtrdi 2792 . . . 4 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)))
5 cnvimarndm 6000 . . . . . 6 (𝐹 “ ran 𝐹) = dom 𝐹
65uneq1i 4099 . . . . 5 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = (dom 𝐹 ∪ (𝐹𝐴))
7 cnvimass 5999 . . . . . 6 (𝐹𝐴) ⊆ dom 𝐹
8 ssequn2 4123 . . . . . 6 ((𝐹𝐴) ⊆ dom 𝐹 ↔ (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹)
97, 8mpbi 229 . . . . 5 (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹
106, 9eqtri 2764 . . . 4 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = dom 𝐹
114, 10eqtrdi 2792 . . 3 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = dom 𝐹)
1211eqcoms 2744 . 2 ((ran 𝐹𝐴) = 𝐴 → (𝐹𝐴) = dom 𝐹)
131, 12sylbi 216 1 (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cun 3890  wss 3892  ccnv 5599  dom cdm 5600  ran crn 5601  cima 5603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613
This theorem is referenced by:  fnco  6580  fimacnv  6652
  Copyright terms: Public domain W3C validator