MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimassrndm Structured version   Visualization version   GIF version

Theorem cnvimassrndm 6099
Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6031 for subsets. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
cnvimassrndm (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)

Proof of Theorem cnvimassrndm
StepHypRef Expression
1 ssequn1 4133 . 2 (ran 𝐹𝐴 ↔ (ran 𝐹𝐴) = 𝐴)
2 imaeq2 6004 . . . . 5 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = (𝐹 “ (ran 𝐹𝐴)))
3 imaundi 6096 . . . . 5 (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴))
42, 3eqtrdi 2782 . . . 4 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)))
5 cnvimarndm 6031 . . . . . 6 (𝐹 “ ran 𝐹) = dom 𝐹
65uneq1i 4111 . . . . 5 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = (dom 𝐹 ∪ (𝐹𝐴))
7 cnvimass 6030 . . . . . 6 (𝐹𝐴) ⊆ dom 𝐹
8 ssequn2 4136 . . . . . 6 ((𝐹𝐴) ⊆ dom 𝐹 ↔ (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹)
97, 8mpbi 230 . . . . 5 (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹
106, 9eqtri 2754 . . . 4 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = dom 𝐹
114, 10eqtrdi 2782 . . 3 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = dom 𝐹)
1211eqcoms 2739 . 2 ((ran 𝐹𝐴) = 𝐴 → (𝐹𝐴) = dom 𝐹)
131, 12sylbi 217 1 (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3895  wss 3897  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  fnco  6599  fimacnv  6673
  Copyright terms: Public domain W3C validator