MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimassrndm Structured version   Visualization version   GIF version

Theorem cnvimassrndm 6183
Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6112 for subsets. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
cnvimassrndm (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)

Proof of Theorem cnvimassrndm
StepHypRef Expression
1 ssequn1 4209 . 2 (ran 𝐹𝐴 ↔ (ran 𝐹𝐴) = 𝐴)
2 imaeq2 6085 . . . . 5 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = (𝐹 “ (ran 𝐹𝐴)))
3 imaundi 6181 . . . . 5 (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴))
42, 3eqtrdi 2796 . . . 4 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)))
5 cnvimarndm 6112 . . . . . 6 (𝐹 “ ran 𝐹) = dom 𝐹
65uneq1i 4187 . . . . 5 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = (dom 𝐹 ∪ (𝐹𝐴))
7 cnvimass 6111 . . . . . 6 (𝐹𝐴) ⊆ dom 𝐹
8 ssequn2 4212 . . . . . 6 ((𝐹𝐴) ⊆ dom 𝐹 ↔ (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹)
97, 8mpbi 230 . . . . 5 (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹
106, 9eqtri 2768 . . . 4 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = dom 𝐹
114, 10eqtrdi 2796 . . 3 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = dom 𝐹)
1211eqcoms 2748 . 2 ((ran 𝐹𝐴) = 𝐴 → (𝐹𝐴) = dom 𝐹)
131, 12sylbi 217 1 (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cun 3974  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  fnco  6697  fimacnv  6769
  Copyright terms: Public domain W3C validator