MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvimassrndm Structured version   Visualization version   GIF version

Theorem cnvimassrndm 6146
Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6075 for subsets. (Contributed by AV, 18-Sep-2024.)
Assertion
Ref Expression
cnvimassrndm (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)

Proof of Theorem cnvimassrndm
StepHypRef Expression
1 ssequn1 4166 . 2 (ran 𝐹𝐴 ↔ (ran 𝐹𝐴) = 𝐴)
2 imaeq2 6048 . . . . 5 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = (𝐹 “ (ran 𝐹𝐴)))
3 imaundi 6143 . . . . 5 (𝐹 “ (ran 𝐹𝐴)) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴))
42, 3eqtrdi 2787 . . . 4 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)))
5 cnvimarndm 6075 . . . . . 6 (𝐹 “ ran 𝐹) = dom 𝐹
65uneq1i 4144 . . . . 5 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = (dom 𝐹 ∪ (𝐹𝐴))
7 cnvimass 6074 . . . . . 6 (𝐹𝐴) ⊆ dom 𝐹
8 ssequn2 4169 . . . . . 6 ((𝐹𝐴) ⊆ dom 𝐹 ↔ (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹)
97, 8mpbi 230 . . . . 5 (dom 𝐹 ∪ (𝐹𝐴)) = dom 𝐹
106, 9eqtri 2759 . . . 4 ((𝐹 “ ran 𝐹) ∪ (𝐹𝐴)) = dom 𝐹
114, 10eqtrdi 2787 . . 3 (𝐴 = (ran 𝐹𝐴) → (𝐹𝐴) = dom 𝐹)
1211eqcoms 2744 . 2 ((ran 𝐹𝐴) = 𝐴 → (𝐹𝐴) = dom 𝐹)
131, 12sylbi 217 1 (ran 𝐹𝐴 → (𝐹𝐴) = dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3929  wss 3931  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672
This theorem is referenced by:  fnco  6661  fimacnv  6733
  Copyright terms: Public domain W3C validator