| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimassrndm | Structured version Visualization version GIF version | ||
| Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6075 for subsets. (Contributed by AV, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| cnvimassrndm | ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4166 | . 2 ⊢ (ran 𝐹 ⊆ 𝐴 ↔ (ran 𝐹 ∪ 𝐴) = 𝐴) | |
| 2 | imaeq2 6048 | . . . . 5 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (ran 𝐹 ∪ 𝐴))) | |
| 3 | imaundi 6143 | . . . . 5 ⊢ (◡𝐹 “ (ran 𝐹 ∪ 𝐴)) = ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) | |
| 4 | 2, 3 | eqtrdi 2787 | . . . 4 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴))) |
| 5 | cnvimarndm 6075 | . . . . . 6 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
| 6 | 5 | uneq1i 4144 | . . . . 5 ⊢ ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) = (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) |
| 7 | cnvimass 6074 | . . . . . 6 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
| 8 | ssequn2 4169 | . . . . . 6 ⊢ ((◡𝐹 “ 𝐴) ⊆ dom 𝐹 ↔ (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) = dom 𝐹) | |
| 9 | 7, 8 | mpbi 230 | . . . . 5 ⊢ (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) = dom 𝐹 |
| 10 | 6, 9 | eqtri 2759 | . . . 4 ⊢ ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) = dom 𝐹 |
| 11 | 4, 10 | eqtrdi 2787 | . . 3 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = dom 𝐹) |
| 12 | 11 | eqcoms 2744 | . 2 ⊢ ((ran 𝐹 ∪ 𝐴) = 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
| 13 | 1, 12 | sylbi 217 | 1 ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3929 ⊆ wss 3931 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: fnco 6661 fimacnv 6733 |
| Copyright terms: Public domain | W3C validator |