| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvimassrndm | Structured version Visualization version GIF version | ||
| Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6054 for subsets. (Contributed by AV, 18-Sep-2024.) |
| Ref | Expression |
|---|---|
| cnvimassrndm | ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4149 | . 2 ⊢ (ran 𝐹 ⊆ 𝐴 ↔ (ran 𝐹 ∪ 𝐴) = 𝐴) | |
| 2 | imaeq2 6027 | . . . . 5 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (ran 𝐹 ∪ 𝐴))) | |
| 3 | imaundi 6122 | . . . . 5 ⊢ (◡𝐹 “ (ran 𝐹 ∪ 𝐴)) = ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) | |
| 4 | 2, 3 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴))) |
| 5 | cnvimarndm 6054 | . . . . . 6 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
| 6 | 5 | uneq1i 4127 | . . . . 5 ⊢ ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) = (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) |
| 7 | cnvimass 6053 | . . . . . 6 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
| 8 | ssequn2 4152 | . . . . . 6 ⊢ ((◡𝐹 “ 𝐴) ⊆ dom 𝐹 ↔ (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) = dom 𝐹) | |
| 9 | 7, 8 | mpbi 230 | . . . . 5 ⊢ (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) = dom 𝐹 |
| 10 | 6, 9 | eqtri 2752 | . . . 4 ⊢ ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) = dom 𝐹 |
| 11 | 4, 10 | eqtrdi 2780 | . . 3 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = dom 𝐹) |
| 12 | 11 | eqcoms 2737 | . 2 ⊢ ((ran 𝐹 ∪ 𝐴) = 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
| 13 | 1, 12 | sylbi 217 | 1 ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3912 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: fnco 6636 fimacnv 6710 |
| Copyright terms: Public domain | W3C validator |