![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvimassrndm | Structured version Visualization version GIF version |
Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm 6078 for subsets. (Contributed by AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
cnvimassrndm | ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4179 | . 2 ⊢ (ran 𝐹 ⊆ 𝐴 ↔ (ran 𝐹 ∪ 𝐴) = 𝐴) | |
2 | imaeq2 6053 | . . . . 5 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = (◡𝐹 “ (ran 𝐹 ∪ 𝐴))) | |
3 | imaundi 6146 | . . . . 5 ⊢ (◡𝐹 “ (ran 𝐹 ∪ 𝐴)) = ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) | |
4 | 2, 3 | eqtrdi 2788 | . . . 4 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴))) |
5 | cnvimarndm 6078 | . . . . . 6 ⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 | |
6 | 5 | uneq1i 4158 | . . . . 5 ⊢ ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) = (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) |
7 | cnvimass 6077 | . . . . . 6 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
8 | ssequn2 4182 | . . . . . 6 ⊢ ((◡𝐹 “ 𝐴) ⊆ dom 𝐹 ↔ (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) = dom 𝐹) | |
9 | 7, 8 | mpbi 229 | . . . . 5 ⊢ (dom 𝐹 ∪ (◡𝐹 “ 𝐴)) = dom 𝐹 |
10 | 6, 9 | eqtri 2760 | . . . 4 ⊢ ((◡𝐹 “ ran 𝐹) ∪ (◡𝐹 “ 𝐴)) = dom 𝐹 |
11 | 4, 10 | eqtrdi 2788 | . . 3 ⊢ (𝐴 = (ran 𝐹 ∪ 𝐴) → (◡𝐹 “ 𝐴) = dom 𝐹) |
12 | 11 | eqcoms 2740 | . 2 ⊢ ((ran 𝐹 ∪ 𝐴) = 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
13 | 1, 12 | sylbi 216 | 1 ⊢ (ran 𝐹 ⊆ 𝐴 → (◡𝐹 “ 𝐴) = dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∪ cun 3945 ⊆ wss 3947 ◡ccnv 5674 dom cdm 5675 ran crn 5676 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: fnco 6664 fimacnv 6736 |
Copyright terms: Public domain | W3C validator |