Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnco | Structured version Visualization version GIF version |
Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6564 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
2 | fncofn 6579 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | |
3 | 1, 2 | sylan2 594 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
5 | cnvimassrndm 6070 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (◡𝐺 “ 𝐴) = dom 𝐺) | |
6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (◡𝐺 “ 𝐴) = dom 𝐺) |
7 | fndm 6567 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
8 | 7 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
9 | 6, 8 | eqtr2d 2777 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → 𝐵 = (◡𝐺 “ 𝐴)) |
10 | 9 | fneq2d 6558 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
11 | 4, 10 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ⊆ wss 3892 ◡ccnv 5599 dom cdm 5600 ran crn 5601 “ cima 5603 ∘ ccom 5604 Fun wfun 6452 Fn wfn 6453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 |
This theorem is referenced by: fcoOLD 6655 fnfco 6669 fsplitfpar 7990 fipreima 9169 updjudhcoinlf 9734 updjudhcoinrg 9735 cshco 14594 swrdco 14595 isofn 17532 prdsinvlem 18729 prdsmgp 19894 pws1 19900 frlmbas 21007 frlmup3 21052 frlmup4 21053 evlslem1 21337 upxp 22819 uptx 22821 0vfval 29013 xppreima2 31033 psgnfzto1stlem 31412 tocycfvres1 31422 tocycfvres2 31423 cycpmfvlem 31424 cycpmfv3 31427 cycpmco2 31445 sseqfv1 32401 sseqfn 32402 sseqfv2 32406 volsupnfl 35866 ftc1anclem5 35898 ftc1anclem8 35901 choicefi 42784 fourierdlem42 43739 fcoreslem4 44618 ackvalsucsucval 46092 |
Copyright terms: Public domain | W3C validator |