![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnco | Structured version Visualization version GIF version |
Description: Composition of two functions. (Contributed by NM, 22-May-2006.) |
Ref | Expression |
---|---|
fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6283 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | fnfun 6283 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
3 | funco 6225 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹 ∘ 𝐺)) | |
4 | 1, 2, 3 | syl2an 587 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → Fun (𝐹 ∘ 𝐺)) |
5 | 4 | 3adant3 1113 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → Fun (𝐹 ∘ 𝐺)) |
6 | fndm 6285 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
7 | 6 | sseq2d 3882 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺 ⊆ 𝐴)) |
8 | 7 | biimpar 470 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → ran 𝐺 ⊆ dom 𝐹) |
9 | dmcosseq 5683 | . . . . 5 ⊢ (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹 ∘ 𝐺) = dom 𝐺) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
11 | 10 | 3adant2 1112 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = dom 𝐺) |
12 | fndm 6285 | . . . 4 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
13 | 12 | 3ad2ant2 1115 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
14 | 11, 13 | eqtrd 2807 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom (𝐹 ∘ 𝐺) = 𝐵) |
15 | df-fn 6188 | . 2 ⊢ ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (Fun (𝐹 ∘ 𝐺) ∧ dom (𝐹 ∘ 𝐺) = 𝐵)) | |
16 | 5, 14, 15 | sylanbrc 575 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ⊆ wss 3822 dom cdm 5403 ran crn 5404 ∘ ccom 5407 Fun wfun 6179 Fn wfn 6180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-fun 6187 df-fn 6188 |
This theorem is referenced by: fco 6358 fnfco 6369 fipreima 8623 updjudhcoinlf 9153 updjudhcoinrg 9154 cshco 14058 swrdco 14059 isofn 16915 prdsinvlem 18007 prdsmgp 19095 pws1 19101 evlslem1 20020 frlmbas 20616 frlmup3 20661 frlmup4 20662 upxp 21950 uptx 21952 0vfval 28175 xppreima2 30174 cycpmfvlem 30474 cycpmfv3 30477 psgnfzto1stlem 30723 sseqfv1 31325 sseqfn 31326 sseqfv2 31330 volsupnfl 34415 ftc1anclem5 34449 ftc1anclem8 34452 choicefi 40923 fourierdlem42 41899 |
Copyright terms: Public domain | W3C validator |