MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Visualization version   GIF version

Theorem fnco 6599
Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 6581 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
2 fncofn 6598 . . . 4 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
31, 2sylan2 593 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹𝐺) Fn (𝐺𝐴))
433adant3 1132 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn (𝐺𝐴))
5 cnvimassrndm 6099 . . . . 5 (ran 𝐺𝐴 → (𝐺𝐴) = dom 𝐺)
653ad2ant3 1135 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐺𝐴) = dom 𝐺)
7 fndm 6584 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
873ad2ant2 1134 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
96, 8eqtr2d 2767 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → 𝐵 = (𝐺𝐴))
109fneq2d 6575 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → ((𝐹𝐺) Fn 𝐵 ↔ (𝐹𝐺) Fn (𝐺𝐴)))
114, 10mpbird 257 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wss 3902  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619  ccom 5620  Fun wfun 6475   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-fun 6483  df-fn 6484
This theorem is referenced by:  fnfco  6688  fsplitfpar  8048  fipreima  9242  updjudhcoinlf  9822  updjudhcoinrg  9823  cshco  14740  swrdco  14741  isofn  17679  prdsinvlem  18959  prdsmgp  20067  pws1  20241  frlmbas  21690  frlmup3  21735  frlmup4  21736  evlslem1  22015  upxp  23536  uptx  23538  0vfval  30581  xppreima2  32628  psgnfzto1stlem  33064  tocycfvres1  33074  tocycfvres2  33075  cycpmfvlem  33076  cycpmfv3  33079  cycpmco2  33097  sseqfv1  34397  sseqfn  34398  sseqfv2  34402  volsupnfl  37704  ftc1anclem5  37736  ftc1anclem8  37739  choicefi  45236  fourierdlem42  46186  fcoreslem4  47096  ackvalsucsucval  48719  isofnALT  49062
  Copyright terms: Public domain W3C validator