MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Visualization version   GIF version

Theorem fnco 6668
Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 6650 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
2 fncofn 6667 . . . 4 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
31, 2sylan2 594 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹𝐺) Fn (𝐺𝐴))
433adant3 1133 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn (𝐺𝐴))
5 cnvimassrndm 6152 . . . . 5 (ran 𝐺𝐴 → (𝐺𝐴) = dom 𝐺)
653ad2ant3 1136 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐺𝐴) = dom 𝐺)
7 fndm 6653 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
873ad2ant2 1135 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
96, 8eqtr2d 2774 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → 𝐵 = (𝐺𝐴))
109fneq2d 6644 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → ((𝐹𝐺) Fn 𝐵 ↔ (𝐹𝐺) Fn (𝐺𝐴)))
114, 10mpbird 257 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wss 3949  ccnv 5676  dom cdm 5677  ran crn 5678  cima 5680  ccom 5681  Fun wfun 6538   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547
This theorem is referenced by:  fcoOLD  6743  fnfco  6757  fsplitfpar  8104  fipreima  9358  updjudhcoinlf  9927  updjudhcoinrg  9928  cshco  14787  swrdco  14788  isofn  17722  prdsinvlem  18932  prdsmgp  20132  pws1  20138  frlmbas  21310  frlmup3  21355  frlmup4  21356  evlslem1  21645  upxp  23127  uptx  23129  0vfval  29859  xppreima2  31876  psgnfzto1stlem  32259  tocycfvres1  32269  tocycfvres2  32270  cycpmfvlem  32271  cycpmfv3  32274  cycpmco2  32292  sseqfv1  33388  sseqfn  33389  sseqfv2  33393  volsupnfl  36533  ftc1anclem5  36565  ftc1anclem8  36568  choicefi  43899  fourierdlem42  44865  fcoreslem4  45776  ackvalsucsucval  47374
  Copyright terms: Public domain W3C validator