MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Visualization version   GIF version

Theorem fnco 6692
Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 6674 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
2 fncofn 6691 . . . 4 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
31, 2sylan2 592 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹𝐺) Fn (𝐺𝐴))
433adant3 1132 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn (𝐺𝐴))
5 cnvimassrndm 6178 . . . . 5 (ran 𝐺𝐴 → (𝐺𝐴) = dom 𝐺)
653ad2ant3 1135 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐺𝐴) = dom 𝐺)
7 fndm 6677 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
873ad2ant2 1134 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
96, 8eqtr2d 2781 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → 𝐵 = (𝐺𝐴))
109fneq2d 6668 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → ((𝐹𝐺) Fn 𝐵 ↔ (𝐹𝐺) Fn (𝐺𝐴)))
114, 10mpbird 257 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wss 3976  ccnv 5694  dom cdm 5695  ran crn 5696  cima 5698  ccom 5699  Fun wfun 6562   Fn wfn 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-fun 6570  df-fn 6571
This theorem is referenced by:  fcoOLD  6767  fnfco  6781  fsplitfpar  8153  fipreima  9422  updjudhcoinlf  9995  updjudhcoinrg  9996  cshco  14879  swrdco  14880  isofn  17830  prdsinvlem  19083  prdsmgp  20172  pws1  20342  frlmbas  21792  frlmup3  21837  frlmup4  21838  evlslem1  22122  upxp  23644  uptx  23646  0vfval  30630  xppreima2  32661  psgnfzto1stlem  33085  tocycfvres1  33095  tocycfvres2  33096  cycpmfvlem  33097  cycpmfv3  33100  cycpmco2  33118  sseqfv1  34346  sseqfn  34347  sseqfv2  34351  volsupnfl  37618  ftc1anclem5  37650  ftc1anclem8  37653  choicefi  45097  fourierdlem42  46060  fcoreslem4  46971  ackvalsucsucval  48412
  Copyright terms: Public domain W3C validator