| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6581 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
| 2 | fncofn 6598 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| 5 | cnvimassrndm 6099 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (◡𝐺 “ 𝐴) = dom 𝐺) | |
| 6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (◡𝐺 “ 𝐴) = dom 𝐺) |
| 7 | fndm 6584 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 8 | 7 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
| 9 | 6, 8 | eqtr2d 2767 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → 𝐵 = (◡𝐺 “ 𝐴)) |
| 10 | 9 | fneq2d 6575 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ∘ ccom 5620 Fun wfun 6475 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: fnfco 6688 fsplitfpar 8048 fipreima 9242 updjudhcoinlf 9822 updjudhcoinrg 9823 cshco 14740 swrdco 14741 isofn 17679 prdsinvlem 18959 prdsmgp 20067 pws1 20241 frlmbas 21690 frlmup3 21735 frlmup4 21736 evlslem1 22015 upxp 23536 uptx 23538 0vfval 30581 xppreima2 32628 psgnfzto1stlem 33064 tocycfvres1 33074 tocycfvres2 33075 cycpmfvlem 33076 cycpmfv3 33079 cycpmco2 33097 sseqfv1 34397 sseqfn 34398 sseqfv2 34402 volsupnfl 37704 ftc1anclem5 37736 ftc1anclem8 37739 choicefi 45236 fourierdlem42 46186 fcoreslem4 47096 ackvalsucsucval 48719 isofnALT 49062 |
| Copyright terms: Public domain | W3C validator |