| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6586 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
| 2 | fncofn 6603 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| 5 | cnvimassrndm 6105 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (◡𝐺 “ 𝐴) = dom 𝐺) | |
| 6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (◡𝐺 “ 𝐴) = dom 𝐺) |
| 7 | fndm 6589 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 8 | 7 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
| 9 | 6, 8 | eqtr2d 2765 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → 𝐵 = (◡𝐺 “ 𝐴)) |
| 10 | 9 | fneq2d 6580 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ⊆ wss 3905 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ∘ ccom 5627 Fun wfun 6480 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 |
| This theorem is referenced by: fnfco 6693 fsplitfpar 8058 fipreima 9267 updjudhcoinlf 9847 updjudhcoinrg 9848 cshco 14761 swrdco 14762 isofn 17700 prdsinvlem 18946 prdsmgp 20054 pws1 20228 frlmbas 21680 frlmup3 21725 frlmup4 21726 evlslem1 22005 upxp 23526 uptx 23528 0vfval 30568 xppreima2 32608 psgnfzto1stlem 33055 tocycfvres1 33065 tocycfvres2 33066 cycpmfvlem 33067 cycpmfv3 33070 cycpmco2 33088 sseqfv1 34356 sseqfn 34357 sseqfv2 34361 volsupnfl 37644 ftc1anclem5 37676 ftc1anclem8 37679 choicefi 45178 fourierdlem42 46131 fcoreslem4 47051 ackvalsucsucval 48674 isofnALT 49017 |
| Copyright terms: Public domain | W3C validator |