![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnco | Structured version Visualization version GIF version |
Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6674 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
2 | fncofn 6691 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | |
3 | 1, 2 | sylan2 592 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
5 | cnvimassrndm 6178 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (◡𝐺 “ 𝐴) = dom 𝐺) | |
6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (◡𝐺 “ 𝐴) = dom 𝐺) |
7 | fndm 6677 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
8 | 7 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
9 | 6, 8 | eqtr2d 2781 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → 𝐵 = (◡𝐺 “ 𝐴)) |
10 | 9 | fneq2d 6668 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
11 | 4, 10 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ⊆ wss 3976 ◡ccnv 5694 dom cdm 5695 ran crn 5696 “ cima 5698 ∘ ccom 5699 Fun wfun 6562 Fn wfn 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-fun 6570 df-fn 6571 |
This theorem is referenced by: fcoOLD 6767 fnfco 6781 fsplitfpar 8153 fipreima 9422 updjudhcoinlf 9995 updjudhcoinrg 9996 cshco 14879 swrdco 14880 isofn 17830 prdsinvlem 19083 prdsmgp 20172 pws1 20342 frlmbas 21792 frlmup3 21837 frlmup4 21838 evlslem1 22122 upxp 23644 uptx 23646 0vfval 30630 xppreima2 32661 psgnfzto1stlem 33085 tocycfvres1 33095 tocycfvres2 33096 cycpmfvlem 33097 cycpmfv3 33100 cycpmco2 33118 sseqfv1 34346 sseqfn 34347 sseqfv2 34351 volsupnfl 37618 ftc1anclem5 37650 ftc1anclem8 37653 choicefi 45097 fourierdlem42 46060 fcoreslem4 46971 ackvalsucsucval 48412 |
Copyright terms: Public domain | W3C validator |