| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fnco | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6618 | . . . 4 ⊢ (𝐺 Fn 𝐵 → Fun 𝐺) | |
| 2 | fncofn 6635 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| 4 | 3 | 3adant3 1132 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴)) |
| 5 | cnvimassrndm 6125 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐴 → (◡𝐺 “ 𝐴) = dom 𝐺) | |
| 6 | 5 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (◡𝐺 “ 𝐴) = dom 𝐺) |
| 7 | fndm 6621 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) | |
| 8 | 7 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → dom 𝐺 = 𝐵) |
| 9 | 6, 8 | eqtr2d 2765 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → 𝐵 = (◡𝐺 “ 𝐴)) |
| 10 | 9 | fneq2d 6612 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → ((𝐹 ∘ 𝐺) Fn 𝐵 ↔ (𝐹 ∘ 𝐺) Fn (◡𝐺 “ 𝐴))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ ran 𝐺 ⊆ 𝐴) → (𝐹 ∘ 𝐺) Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 ∘ ccom 5642 Fun wfun 6505 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 |
| This theorem is referenced by: fnfco 6725 fsplitfpar 8097 fipreima 9309 updjudhcoinlf 9885 updjudhcoinrg 9886 cshco 14802 swrdco 14803 isofn 17737 prdsinvlem 18981 prdsmgp 20060 pws1 20234 frlmbas 21664 frlmup3 21709 frlmup4 21710 evlslem1 21989 upxp 23510 uptx 23512 0vfval 30535 xppreima2 32575 psgnfzto1stlem 33057 tocycfvres1 33067 tocycfvres2 33068 cycpmfvlem 33069 cycpmfv3 33072 cycpmco2 33090 sseqfv1 34380 sseqfn 34381 sseqfv2 34385 volsupnfl 37659 ftc1anclem5 37691 ftc1anclem8 37694 choicefi 45194 fourierdlem42 46147 fcoreslem4 47067 ackvalsucsucval 48677 isofnALT 49020 |
| Copyright terms: Public domain | W3C validator |