MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Visualization version   GIF version

Theorem fnco 6545
Description: Composition of two functions with domains as a function with domain. (Contributed by NM, 22-May-2006.) (Proof shortened by AV, 20-Sep-2024.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 6529 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
2 fncofn 6544 . . . 4 ((𝐹 Fn 𝐴 ∧ Fun 𝐺) → (𝐹𝐺) Fn (𝐺𝐴))
31, 2sylan2 592 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹𝐺) Fn (𝐺𝐴))
433adant3 1130 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn (𝐺𝐴))
5 cnvimassrndm 6052 . . . . 5 (ran 𝐺𝐴 → (𝐺𝐴) = dom 𝐺)
653ad2ant3 1133 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐺𝐴) = dom 𝐺)
7 fndm 6532 . . . . 5 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
873ad2ant2 1132 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
96, 8eqtr2d 2780 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → 𝐵 = (𝐺𝐴))
109fneq2d 6523 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → ((𝐹𝐺) Fn 𝐵 ↔ (𝐹𝐺) Fn (𝐺𝐴)))
114, 10mpbird 256 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wss 3891  ccnv 5587  dom cdm 5588  ran crn 5589  cima 5591  ccom 5592  Fun wfun 6424   Fn wfn 6425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-fun 6432  df-fn 6433
This theorem is referenced by:  fcoOLD  6621  fnfco  6635  fsplitfpar  7943  fipreima  9086  updjudhcoinlf  9674  updjudhcoinrg  9675  cshco  14530  swrdco  14531  isofn  17468  prdsinvlem  18665  prdsmgp  19830  pws1  19836  frlmbas  20943  frlmup3  20988  frlmup4  20989  evlslem1  21273  upxp  22755  uptx  22757  0vfval  28947  xppreima2  30967  psgnfzto1stlem  31346  tocycfvres1  31356  tocycfvres2  31357  cycpmfvlem  31358  cycpmfv3  31361  cycpmco2  31379  sseqfv1  32335  sseqfn  32336  sseqfv2  32340  volsupnfl  35801  ftc1anclem5  35833  ftc1anclem8  35836  choicefi  42693  fourierdlem42  43644  fcoreslem4  44511  ackvalsucsucval  45986
  Copyright terms: Public domain W3C validator