| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version | ||
| Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6695 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | cnvimassrndm 6125 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 4 | fdm 6697 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 5 | 3, 4 | eqtrd 2764 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3914 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fco 6712 f1co 6767 fimacnvinrn 7043 fmpt 7082 fsuppeq 8154 fsuppeqg 8155 fin1a2lem7 10359 cnclima 23155 iscncl 23156 cnindis 23179 cncmp 23279 ptrescn 23526 qtopuni 23589 qtopcld 23600 qtopcmap 23606 ordthmeolem 23688 rnelfmlem 23839 mbfdm 25527 ismbf 25529 mbfimaicc 25532 ismbf2d 25541 ismbf3d 25555 mbfimaopn2 25558 i1fd 25582 plyeq0 26116 elrspunidl 33399 fsumcvg4 33940 zrhunitpreima 33966 imambfm 34253 carsggect 34309 dstrvprob 34463 poimirlem30 37644 dvtan 37664 smfresal 46786 cnneiima 48905 |
| Copyright terms: Public domain | W3C validator |