![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6754 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | cnvimassrndm 6183 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
4 | fdm 6756 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | eqtrd 2780 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fn 6576 df-f 6577 |
This theorem is referenced by: fco 6771 f1co 6828 fimacnvinrn 7105 fmpt 7144 fsuppeq 8216 fsuppeqg 8217 fin1a2lem7 10475 cnclima 23297 iscncl 23298 cnindis 23321 cncmp 23421 ptrescn 23668 qtopuni 23731 qtopcld 23742 qtopcmap 23748 ordthmeolem 23830 rnelfmlem 23981 mbfdm 25680 ismbf 25682 mbfimaicc 25685 ismbf2d 25694 ismbf3d 25708 mbfimaopn2 25711 i1fd 25735 plyeq0 26270 elrspunidl 33421 fsumcvg4 33896 zrhunitpreima 33924 imambfm 34227 carsggect 34283 dstrvprob 34436 poimirlem30 37610 dvtan 37630 smfresal 46709 cnneiima 48596 |
Copyright terms: Public domain | W3C validator |