Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6607 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | cnvimassrndm 6055 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
4 | fdm 6609 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | eqtrd 2778 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3887 ◡ccnv 5588 dom cdm 5589 ran crn 5590 “ cima 5592 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fn 6436 df-f 6437 |
This theorem is referenced by: fco 6624 f1co 6682 fimacnvinrn 6949 fmpt 6984 frnsuppeq 7991 frnsuppeqg 7992 fin1a2lem7 10162 cnclima 22419 iscncl 22420 cnindis 22443 cncmp 22543 ptrescn 22790 qtopuni 22853 qtopcld 22864 qtopcmap 22870 ordthmeolem 22952 rnelfmlem 23103 mbfdm 24790 ismbf 24792 mbfimaicc 24795 ismbf2d 24804 ismbf3d 24818 mbfimaopn2 24821 i1fd 24845 plyeq0 25372 elrspunidl 31606 fsumcvg4 31900 zrhunitpreima 31928 imambfm 32229 carsggect 32285 dstrvprob 32438 poimirlem30 35807 dvtan 35827 smfresal 44322 cnneiima 46210 |
Copyright terms: Public domain | W3C validator |