| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version | ||
| Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6713 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | cnvimassrndm 6141 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 4 | fdm 6715 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 5 | 3, 4 | eqtrd 2770 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3926 ◡ccnv 5653 dom cdm 5654 ran crn 5655 “ cima 5657 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fn 6534 df-f 6535 |
| This theorem is referenced by: fco 6730 f1co 6785 fimacnvinrn 7061 fmpt 7100 fsuppeq 8174 fsuppeqg 8175 fin1a2lem7 10420 cnclima 23206 iscncl 23207 cnindis 23230 cncmp 23330 ptrescn 23577 qtopuni 23640 qtopcld 23651 qtopcmap 23657 ordthmeolem 23739 rnelfmlem 23890 mbfdm 25579 ismbf 25581 mbfimaicc 25584 ismbf2d 25593 ismbf3d 25607 mbfimaopn2 25610 i1fd 25634 plyeq0 26168 elrspunidl 33443 fsumcvg4 33981 zrhunitpreima 34007 imambfm 34294 carsggect 34350 dstrvprob 34504 poimirlem30 37674 dvtan 37694 smfresal 46817 cnneiima 48891 |
| Copyright terms: Public domain | W3C validator |