Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6644 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | cnvimassrndm 6077 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
4 | fdm 6646 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | eqtrd 2776 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3896 ◡ccnv 5606 dom cdm 5607 ran crn 5608 “ cima 5610 ⟶wf 6461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-xp 5613 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-fn 6468 df-f 6469 |
This theorem is referenced by: fco 6661 f1co 6719 fimacnvinrn 6988 fmpt 7023 fsuppeq 8039 fsuppeqg 8040 fin1a2lem7 10241 cnclima 22499 iscncl 22500 cnindis 22523 cncmp 22623 ptrescn 22870 qtopuni 22933 qtopcld 22944 qtopcmap 22950 ordthmeolem 23032 rnelfmlem 23183 mbfdm 24870 ismbf 24872 mbfimaicc 24875 ismbf2d 24884 ismbf3d 24898 mbfimaopn2 24901 i1fd 24925 plyeq0 25452 elrspunidl 31741 fsumcvg4 32036 zrhunitpreima 32064 imambfm 32365 carsggect 32421 dstrvprob 32574 poimirlem30 35884 dvtan 35904 smfresal 44582 cnneiima 46480 |
Copyright terms: Public domain | W3C validator |