![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6743 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | cnvimassrndm 6173 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
4 | fdm 6745 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | eqtrd 2774 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ⊆ wss 3962 ◡ccnv 5687 dom cdm 5688 ran crn 5689 “ cima 5691 ⟶wf 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-fn 6565 df-f 6566 |
This theorem is referenced by: fco 6760 f1co 6815 fimacnvinrn 7090 fmpt 7129 fsuppeq 8198 fsuppeqg 8199 fin1a2lem7 10443 cnclima 23291 iscncl 23292 cnindis 23315 cncmp 23415 ptrescn 23662 qtopuni 23725 qtopcld 23736 qtopcmap 23742 ordthmeolem 23824 rnelfmlem 23975 mbfdm 25674 ismbf 25676 mbfimaicc 25679 ismbf2d 25688 ismbf3d 25702 mbfimaopn2 25705 i1fd 25729 plyeq0 26264 elrspunidl 33435 fsumcvg4 33910 zrhunitpreima 33938 imambfm 34243 carsggect 34299 dstrvprob 34452 poimirlem30 37636 dvtan 37656 smfresal 46743 cnneiima 48712 |
Copyright terms: Public domain | W3C validator |