| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version | ||
| Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6659 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | cnvimassrndm 6101 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 4 | fdm 6661 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 5 | 3, 4 | eqtrd 2764 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3903 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fn 6485 df-f 6486 |
| This theorem is referenced by: fco 6676 f1co 6731 fimacnvinrn 7005 fmpt 7044 fsuppeq 8108 fsuppeqg 8109 fin1a2lem7 10300 cnclima 23153 iscncl 23154 cnindis 23177 cncmp 23277 ptrescn 23524 qtopuni 23587 qtopcld 23598 qtopcmap 23604 ordthmeolem 23686 rnelfmlem 23837 mbfdm 25525 ismbf 25527 mbfimaicc 25530 ismbf2d 25539 ismbf3d 25553 mbfimaopn2 25556 i1fd 25580 plyeq0 26114 elrspunidl 33366 fsumcvg4 33923 zrhunitpreima 33949 imambfm 34236 carsggect 34292 dstrvprob 34446 poimirlem30 37640 dvtan 37660 smfresal 46779 cnneiima 48911 |
| Copyright terms: Public domain | W3C validator |