| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version | ||
| Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frn 6698 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
| 2 | cnvimassrndm 6128 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
| 4 | fdm 6700 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 5 | 3, 4 | eqtrd 2765 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ⊆ wss 3917 ◡ccnv 5640 dom cdm 5641 ran crn 5642 “ cima 5644 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fco 6715 f1co 6770 fimacnvinrn 7046 fmpt 7085 fsuppeq 8157 fsuppeqg 8158 fin1a2lem7 10366 cnclima 23162 iscncl 23163 cnindis 23186 cncmp 23286 ptrescn 23533 qtopuni 23596 qtopcld 23607 qtopcmap 23613 ordthmeolem 23695 rnelfmlem 23846 mbfdm 25534 ismbf 25536 mbfimaicc 25539 ismbf2d 25548 ismbf3d 25562 mbfimaopn2 25565 i1fd 25589 plyeq0 26123 elrspunidl 33406 fsumcvg4 33947 zrhunitpreima 33973 imambfm 34260 carsggect 34316 dstrvprob 34470 poimirlem30 37651 dvtan 37671 smfresal 46793 cnneiima 48909 |
| Copyright terms: Public domain | W3C validator |