Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fimacnv | Structured version Visualization version GIF version |
Description: The preimage of the codomain of a function is the function's domain. (Contributed by FL, 25-Jan-2007.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fimacnv | ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frn 6591 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | cnvimassrndm 6044 | . . 3 ⊢ (ran 𝐹 ⊆ 𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = dom 𝐹) |
4 | fdm 6593 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
5 | 3, 4 | eqtrd 2778 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (◡𝐹 “ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fn 6421 df-f 6422 |
This theorem is referenced by: fco 6608 f1co 6666 fimacnvinrn 6931 fmpt 6966 frnsuppeq 7962 frnsuppeqg 7963 fin1a2lem7 10093 cnclima 22327 iscncl 22328 cnindis 22351 cncmp 22451 ptrescn 22698 qtopuni 22761 qtopcld 22772 qtopcmap 22778 ordthmeolem 22860 rnelfmlem 23011 mbfdm 24695 ismbf 24697 mbfimaicc 24700 ismbf2d 24709 ismbf3d 24723 mbfimaopn2 24726 i1fd 24750 plyeq0 25277 elrspunidl 31508 fsumcvg4 31802 zrhunitpreima 31828 imambfm 32129 carsggect 32185 dstrvprob 32338 poimirlem30 35734 dvtan 35754 smfresal 44209 cnneiima 46098 |
Copyright terms: Public domain | W3C validator |