Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrclfv | Structured version Visualization version GIF version |
Description: The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.) |
Ref | Expression |
---|---|
cnvtrclfv | ⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | nnnn0 12170 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
3 | relexpcnv 14674 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ 𝑅 ∈ V) → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) | |
4 | 2, 3 | sylan 579 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ∧ 𝑅 ∈ V) → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) |
5 | 4 | expcom 413 | . . . . 5 ⊢ (𝑅 ∈ V → (𝑛 ∈ ℕ → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛))) |
6 | 5 | ralrimiv 3106 | . . . 4 ⊢ (𝑅 ∈ V → ∀𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) |
7 | iuneq2 4940 | . . . 4 ⊢ (∀𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛) → ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑅 ∈ V → ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
9 | oveq1 7262 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
10 | 9 | iuneq2d 4950 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
11 | dftrcl3 41217 | . . . . . 6 ⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
12 | nnex 11909 | . . . . . . 7 ⊢ ℕ ∈ V | |
13 | ovex 7288 | . . . . . . 7 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
14 | 12, 13 | iunex 7784 | . . . . . 6 ⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V |
15 | 10, 11, 14 | fvmpt 6857 | . . . . 5 ⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
16 | 15 | cnveqd 5773 | . . . 4 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = ◡∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
17 | cnviun 41147 | . . . 4 ⊢ ◡∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) | |
18 | 16, 17 | eqtrdi 2795 | . . 3 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛)) |
19 | cnvexg 7745 | . . . 4 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
20 | oveq1 7262 | . . . . . 6 ⊢ (𝑠 = ◡𝑅 → (𝑠↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) | |
21 | 20 | iuneq2d 4950 | . . . . 5 ⊢ (𝑠 = ◡𝑅 → ∪ 𝑛 ∈ ℕ (𝑠↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
22 | dftrcl3 41217 | . . . . 5 ⊢ t+ = (𝑠 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑠↑𝑟𝑛)) | |
23 | ovex 7288 | . . . . . 6 ⊢ (◡𝑅↑𝑟𝑛) ∈ V | |
24 | 12, 23 | iunex 7784 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛) ∈ V |
25 | 21, 22, 24 | fvmpt 6857 | . . . 4 ⊢ (◡𝑅 ∈ V → (t+‘◡𝑅) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
26 | 19, 25 | syl 17 | . . 3 ⊢ (𝑅 ∈ V → (t+‘◡𝑅) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
27 | 8, 18, 26 | 3eqtr4d 2788 | . 2 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
28 | 1, 27 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∪ ciun 4921 ◡ccnv 5579 ‘cfv 6418 (class class class)co 7255 ℕcn 11903 ℕ0cn0 12163 t+ctcl 14624 ↑𝑟crelexp 14658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-trcl 14626 df-relexp 14659 |
This theorem is referenced by: rntrclfvRP 41228 |
Copyright terms: Public domain | W3C validator |