Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrclfv Structured version   Visualization version   GIF version

Theorem cnvtrclfv 43707
Description: The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.)
Assertion
Ref Expression
cnvtrclfv (𝑅𝑉(t+‘𝑅) = (t+‘𝑅))

Proof of Theorem cnvtrclfv
Dummy variables 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3465 . 2 (𝑅𝑉𝑅 ∈ V)
2 nnnn0 12427 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3 relexpcnv 14978 . . . . . . 7 ((𝑛 ∈ ℕ0𝑅 ∈ V) → (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
42, 3sylan 580 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑅 ∈ V) → (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
54expcom 413 . . . . 5 (𝑅 ∈ V → (𝑛 ∈ ℕ → (𝑅𝑟𝑛) = (𝑅𝑟𝑛)))
65ralrimiv 3124 . . . 4 (𝑅 ∈ V → ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
7 iuneq2 4971 . . . 4 (∀𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅𝑟𝑛) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
86, 7syl 17 . . 3 (𝑅 ∈ V → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
9 oveq1 7376 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
109iuneq2d 4982 . . . . . 6 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
11 dftrcl3 43703 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
12 nnex 12170 . . . . . . 7 ℕ ∈ V
13 ovex 7402 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
1412, 13iunex 7926 . . . . . 6 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
1510, 11, 14fvmpt 6950 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
1615cnveqd 5829 . . . 4 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
17 cnviun 43633 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛)
1816, 17eqtrdi 2780 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
19 cnvexg 7880 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
20 oveq1 7376 . . . . . 6 (𝑠 = 𝑅 → (𝑠𝑟𝑛) = (𝑅𝑟𝑛))
2120iuneq2d 4982 . . . . 5 (𝑠 = 𝑅 𝑛 ∈ ℕ (𝑠𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
22 dftrcl3 43703 . . . . 5 t+ = (𝑠 ∈ V ↦ 𝑛 ∈ ℕ (𝑠𝑟𝑛))
23 ovex 7402 . . . . . 6 (𝑅𝑟𝑛) ∈ V
2412, 23iunex 7926 . . . . 5 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
2521, 22, 24fvmpt 6950 . . . 4 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
2619, 25syl 17 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
278, 18, 263eqtr4d 2774 . 2 (𝑅 ∈ V → (t+‘𝑅) = (t+‘𝑅))
281, 27syl 17 1 (𝑅𝑉(t+‘𝑅) = (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444   ciun 4951  ccnv 5630  cfv 6499  (class class class)co 7369  cn 12164  0cn0 12420  t+ctcl 14928  𝑟crelexp 14962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-n0 12421  df-z 12508  df-uz 12772  df-seq 13945  df-trcl 14930  df-relexp 14963
This theorem is referenced by:  rntrclfvRP  43714
  Copyright terms: Public domain W3C validator