Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvtrclfv Structured version   Visualization version   GIF version

Theorem cnvtrclfv 40870
Description: The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.)
Assertion
Ref Expression
cnvtrclfv (𝑅𝑉(t+‘𝑅) = (t+‘𝑅))

Proof of Theorem cnvtrclfv
Dummy variables 𝑛 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3416 . 2 (𝑅𝑉𝑅 ∈ V)
2 nnnn0 11984 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3 relexpcnv 14485 . . . . . . 7 ((𝑛 ∈ ℕ0𝑅 ∈ V) → (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
42, 3sylan 583 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑅 ∈ V) → (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
54expcom 417 . . . . 5 (𝑅 ∈ V → (𝑛 ∈ ℕ → (𝑅𝑟𝑛) = (𝑅𝑟𝑛)))
65ralrimiv 3095 . . . 4 (𝑅 ∈ V → ∀𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅𝑟𝑛))
7 iuneq2 4901 . . . 4 (∀𝑛 ∈ ℕ (𝑅𝑟𝑛) = (𝑅𝑟𝑛) → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
86, 7syl 17 . . 3 (𝑅 ∈ V → 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
9 oveq1 7178 . . . . . . 7 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
109iuneq2d 4911 . . . . . 6 (𝑟 = 𝑅 𝑛 ∈ ℕ (𝑟𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
11 dftrcl3 40866 . . . . . 6 t+ = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
12 nnex 11723 . . . . . . 7 ℕ ∈ V
13 ovex 7204 . . . . . . 7 (𝑅𝑟𝑛) ∈ V
1412, 13iunex 7695 . . . . . 6 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
1510, 11, 14fvmpt 6776 . . . . 5 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
1615cnveqd 5719 . . . 4 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
17 cnviun 40796 . . . 4 𝑛 ∈ ℕ (𝑅𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛)
1816, 17eqtrdi 2789 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
19 cnvexg 7656 . . . 4 (𝑅 ∈ V → 𝑅 ∈ V)
20 oveq1 7178 . . . . . 6 (𝑠 = 𝑅 → (𝑠𝑟𝑛) = (𝑅𝑟𝑛))
2120iuneq2d 4911 . . . . 5 (𝑠 = 𝑅 𝑛 ∈ ℕ (𝑠𝑟𝑛) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
22 dftrcl3 40866 . . . . 5 t+ = (𝑠 ∈ V ↦ 𝑛 ∈ ℕ (𝑠𝑟𝑛))
23 ovex 7204 . . . . . 6 (𝑅𝑟𝑛) ∈ V
2412, 23iunex 7695 . . . . 5 𝑛 ∈ ℕ (𝑅𝑟𝑛) ∈ V
2521, 22, 24fvmpt 6776 . . . 4 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
2619, 25syl 17 . . 3 (𝑅 ∈ V → (t+‘𝑅) = 𝑛 ∈ ℕ (𝑅𝑟𝑛))
278, 18, 263eqtr4d 2783 . 2 (𝑅 ∈ V → (t+‘𝑅) = (t+‘𝑅))
281, 27syl 17 1 (𝑅𝑉(t+‘𝑅) = (t+‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113  wral 3053  Vcvv 3398   ciun 4882  ccnv 5525  cfv 6340  (class class class)co 7171  cn 11717  0cn0 11977  t+ctcl 14435  𝑟crelexp 14469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-om 7601  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-nn 11718  df-2 11780  df-n0 11978  df-z 12064  df-uz 12326  df-seq 13462  df-trcl 14437  df-relexp 14470
This theorem is referenced by:  rntrclfvRP  40877
  Copyright terms: Public domain W3C validator