![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrclfv | Structured version Visualization version GIF version |
Description: The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.) |
Ref | Expression |
---|---|
cnvtrclfv | ⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | nnnn0 12484 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
3 | relexpcnv 14987 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ 𝑅 ∈ V) → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) | |
4 | 2, 3 | sylan 579 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ∧ 𝑅 ∈ V) → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) |
5 | 4 | expcom 413 | . . . . 5 ⊢ (𝑅 ∈ V → (𝑛 ∈ ℕ → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛))) |
6 | 5 | ralrimiv 3144 | . . . 4 ⊢ (𝑅 ∈ V → ∀𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) |
7 | iuneq2 5016 | . . . 4 ⊢ (∀𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛) → ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑅 ∈ V → ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
9 | oveq1 7419 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
10 | 9 | iuneq2d 5026 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
11 | dftrcl3 42774 | . . . . . 6 ⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
12 | nnex 12223 | . . . . . . 7 ⊢ ℕ ∈ V | |
13 | ovex 7445 | . . . . . . 7 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
14 | 12, 13 | iunex 7958 | . . . . . 6 ⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V |
15 | 10, 11, 14 | fvmpt 6998 | . . . . 5 ⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
16 | 15 | cnveqd 5875 | . . . 4 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = ◡∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
17 | cnviun 42704 | . . . 4 ⊢ ◡∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) | |
18 | 16, 17 | eqtrdi 2787 | . . 3 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛)) |
19 | cnvexg 7918 | . . . 4 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
20 | oveq1 7419 | . . . . . 6 ⊢ (𝑠 = ◡𝑅 → (𝑠↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) | |
21 | 20 | iuneq2d 5026 | . . . . 5 ⊢ (𝑠 = ◡𝑅 → ∪ 𝑛 ∈ ℕ (𝑠↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
22 | dftrcl3 42774 | . . . . 5 ⊢ t+ = (𝑠 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑠↑𝑟𝑛)) | |
23 | ovex 7445 | . . . . . 6 ⊢ (◡𝑅↑𝑟𝑛) ∈ V | |
24 | 12, 23 | iunex 7958 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛) ∈ V |
25 | 21, 22, 24 | fvmpt 6998 | . . . 4 ⊢ (◡𝑅 ∈ V → (t+‘◡𝑅) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
26 | 19, 25 | syl 17 | . . 3 ⊢ (𝑅 ∈ V → (t+‘◡𝑅) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
27 | 8, 18, 26 | 3eqtr4d 2781 | . 2 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
28 | 1, 27 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3060 Vcvv 3473 ∪ ciun 4997 ◡ccnv 5675 ‘cfv 6543 (class class class)co 7412 ℕcn 12217 ℕ0cn0 12477 t+ctcl 14937 ↑𝑟crelexp 14971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-seq 13972 df-trcl 14939 df-relexp 14972 |
This theorem is referenced by: rntrclfvRP 42785 |
Copyright terms: Public domain | W3C validator |