| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvtrclfv | Structured version Visualization version GIF version | ||
| Description: The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.) |
| Ref | Expression |
|---|---|
| cnvtrclfv | ⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | nnnn0 12455 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 3 | relexpcnv 15007 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ0 ∧ 𝑅 ∈ V) → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) | |
| 4 | 2, 3 | sylan 580 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ∧ 𝑅 ∈ V) → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) |
| 5 | 4 | expcom 413 | . . . . 5 ⊢ (𝑅 ∈ V → (𝑛 ∈ ℕ → ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛))) |
| 6 | 5 | ralrimiv 3125 | . . . 4 ⊢ (𝑅 ∈ V → ∀𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) |
| 7 | iuneq2 4977 | . . . 4 ⊢ (∀𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = (◡𝑅↑𝑟𝑛) → ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑅 ∈ V → ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
| 9 | oveq1 7396 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
| 10 | 9 | iuneq2d 4988 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
| 11 | dftrcl3 43702 | . . . . . 6 ⊢ t+ = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
| 12 | nnex 12193 | . . . . . . 7 ⊢ ℕ ∈ V | |
| 13 | ovex 7422 | . . . . . . 7 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
| 14 | 12, 13 | iunex 7949 | . . . . . 6 ⊢ ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) ∈ V |
| 15 | 10, 11, 14 | fvmpt 6970 | . . . . 5 ⊢ (𝑅 ∈ V → (t+‘𝑅) = ∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
| 16 | 15 | cnveqd 5841 | . . . 4 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = ◡∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛)) |
| 17 | cnviun 43632 | . . . 4 ⊢ ◡∪ 𝑛 ∈ ℕ (𝑅↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛) | |
| 18 | 16, 17 | eqtrdi 2781 | . . 3 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = ∪ 𝑛 ∈ ℕ ◡(𝑅↑𝑟𝑛)) |
| 19 | cnvexg 7902 | . . . 4 ⊢ (𝑅 ∈ V → ◡𝑅 ∈ V) | |
| 20 | oveq1 7396 | . . . . . 6 ⊢ (𝑠 = ◡𝑅 → (𝑠↑𝑟𝑛) = (◡𝑅↑𝑟𝑛)) | |
| 21 | 20 | iuneq2d 4988 | . . . . 5 ⊢ (𝑠 = ◡𝑅 → ∪ 𝑛 ∈ ℕ (𝑠↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
| 22 | dftrcl3 43702 | . . . . 5 ⊢ t+ = (𝑠 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑠↑𝑟𝑛)) | |
| 23 | ovex 7422 | . . . . . 6 ⊢ (◡𝑅↑𝑟𝑛) ∈ V | |
| 24 | 12, 23 | iunex 7949 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛) ∈ V |
| 25 | 21, 22, 24 | fvmpt 6970 | . . . 4 ⊢ (◡𝑅 ∈ V → (t+‘◡𝑅) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
| 26 | 19, 25 | syl 17 | . . 3 ⊢ (𝑅 ∈ V → (t+‘◡𝑅) = ∪ 𝑛 ∈ ℕ (◡𝑅↑𝑟𝑛)) |
| 27 | 8, 18, 26 | 3eqtr4d 2775 | . 2 ⊢ (𝑅 ∈ V → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
| 28 | 1, 27 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → ◡(t+‘𝑅) = (t+‘◡𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∪ ciun 4957 ◡ccnv 5639 ‘cfv 6513 (class class class)co 7389 ℕcn 12187 ℕ0cn0 12448 t+ctcl 14957 ↑𝑟crelexp 14991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-seq 13973 df-trcl 14959 df-relexp 14992 |
| This theorem is referenced by: rntrclfvRP 43713 |
| Copyright terms: Public domain | W3C validator |