Proof of Theorem isirred2
Step | Hyp | Ref
| Expression |
1 | | eldif 3897 |
. . 3
⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) |
2 | | eldif 3897 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ∖ 𝑈) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈)) |
3 | | eldif 3897 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∖ 𝑈) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈)) |
4 | 2, 3 | anbi12i 627 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) ↔ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈))) |
5 | | an4 653 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈))) |
6 | 4, 5 | bitri 274 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈))) |
7 | 6 | imbi1i 350 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋)) |
8 | | impexp 451 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋))) |
9 | | pm4.56 986 |
. . . . . . . . . 10
⊢ ((¬
𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) ↔ ¬ (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) |
10 | | df-ne 2944 |
. . . . . . . . . 10
⊢ ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋) |
11 | 9, 10 | imbi12i 351 |
. . . . . . . . 9
⊢ (((¬
𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (¬ (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) → ¬ (𝑥 · 𝑦) = 𝑋)) |
12 | | con34b 316 |
. . . . . . . . 9
⊢ (((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ (¬ (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) → ¬ (𝑥 · 𝑦) = 𝑋)) |
13 | 11, 12 | bitr4i 277 |
. . . . . . . 8
⊢ (((¬
𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
14 | 13 | imbi2i 336 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
15 | 8, 14 | bitri 274 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
16 | 7, 15 | bitri 274 |
. . . . 5
⊢ (((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
17 | 16 | 2albii 1823 |
. . . 4
⊢
(∀𝑥∀𝑦((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
18 | | r2al 3118 |
. . . 4
⊢
(∀𝑥 ∈
(𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥∀𝑦((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋)) |
19 | | r2al 3118 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
20 | 17, 18, 19 | 3bitr4i 303 |
. . 3
⊢
(∀𝑥 ∈
(𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
21 | 1, 20 | anbi12i 627 |
. 2
⊢ ((𝑋 ∈ (𝐵 ∖ 𝑈) ∧ ∀𝑥 ∈ (𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
22 | | isirred2.1 |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
23 | | isirred2.2 |
. . 3
⊢ 𝑈 = (Unit‘𝑅) |
24 | | isirred2.3 |
. . 3
⊢ 𝐼 = (Irred‘𝑅) |
25 | | eqid 2738 |
. . 3
⊢ (𝐵 ∖ 𝑈) = (𝐵 ∖ 𝑈) |
26 | | isirred2.4 |
. . 3
⊢ · =
(.r‘𝑅) |
27 | 22, 23, 24, 25, 26 | isirred 19941 |
. 2
⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ (𝐵 ∖ 𝑈) ∧ ∀𝑥 ∈ (𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋)) |
28 | | df-3an 1088 |
. 2
⊢ ((𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) ↔ ((𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
29 | 21, 27, 28 | 3bitr4i 303 |
1
⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |