MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred2 Structured version   Visualization version   GIF version

Theorem isirred2 20421
Description: Expand out the class difference from isirred 20419. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isirred2.1 𝐵 = (Base‘𝑅)
isirred2.2 𝑈 = (Unit‘𝑅)
isirred2.3 𝐼 = (Irred‘𝑅)
isirred2.4 · = (.r𝑅)
Assertion
Ref Expression
isirred2 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isirred2
StepHypRef Expression
1 eldif 3961 . . 3 (𝑋 ∈ (𝐵𝑈) ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
2 eldif 3961 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
3 eldif 3961 . . . . . . . . 9 (𝑦 ∈ (𝐵𝑈) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝑈))
42, 3anbi12i 628 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) ∧ (𝑦𝐵 ∧ ¬ 𝑦𝑈)))
5 an4 656 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) ∧ (𝑦𝐵 ∧ ¬ 𝑦𝑈)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)))
64, 5bitri 275 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)))
76imbi1i 349 . . . . . 6 (((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋))
8 impexp 450 . . . . . . 7 ((((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋)))
9 pm4.56 991 . . . . . . . . . 10 ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) ↔ ¬ (𝑥𝑈𝑦𝑈))
10 df-ne 2941 . . . . . . . . . 10 ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋)
119, 10imbi12i 350 . . . . . . . . 9 (((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (¬ (𝑥𝑈𝑦𝑈) → ¬ (𝑥 · 𝑦) = 𝑋))
12 con34b 316 . . . . . . . . 9 (((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)) ↔ (¬ (𝑥𝑈𝑦𝑈) → ¬ (𝑥 · 𝑦) = 𝑋))
1311, 12bitr4i 278 . . . . . . . 8 (((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)))
1413imbi2i 336 . . . . . . 7 (((𝑥𝐵𝑦𝐵) → ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋)) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
158, 14bitri 275 . . . . . 6 ((((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
167, 15bitri 275 . . . . 5 (((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
17162albii 1820 . . . 4 (∀𝑥𝑦((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
18 r2al 3195 . . . 4 (∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋))
19 r2al 3195 . . . 4 (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
2017, 18, 193bitr4i 303 . . 3 (∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)))
211, 20anbi12i 628 . 2 ((𝑋 ∈ (𝐵𝑈) ∧ ∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑋𝐵 ∧ ¬ 𝑋𝑈) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
22 isirred2.1 . . 3 𝐵 = (Base‘𝑅)
23 isirred2.2 . . 3 𝑈 = (Unit‘𝑅)
24 isirred2.3 . . 3 𝐼 = (Irred‘𝑅)
25 eqid 2737 . . 3 (𝐵𝑈) = (𝐵𝑈)
26 isirred2.4 . . 3 · = (.r𝑅)
2722, 23, 24, 25, 26isirred 20419 . 2 (𝑋𝐼 ↔ (𝑋 ∈ (𝐵𝑈) ∧ ∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋))
28 df-3an 1089 . 2 ((𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))) ↔ ((𝑋𝐵 ∧ ¬ 𝑋𝑈) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
2921, 27, 283bitr4i 303 1 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wne 2940  wral 3061  cdif 3948  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  Unitcui 20355  Irredcir 20356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-irred 20359
This theorem is referenced by:  irredcl  20424  irrednu  20425  irredmul  20429  prmirredlem  21483  minplyirred  33754
  Copyright terms: Public domain W3C validator