Proof of Theorem isirred2
| Step | Hyp | Ref
| Expression |
| 1 | | eldif 3961 |
. . 3
⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) |
| 2 | | eldif 3961 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ∖ 𝑈) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈)) |
| 3 | | eldif 3961 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝐵 ∖ 𝑈) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈)) |
| 4 | 2, 3 | anbi12i 628 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) ↔ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈))) |
| 5 | | an4 656 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝑈) ∧ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝑈)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈))) |
| 6 | 4, 5 | bitri 275 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈))) |
| 7 | 6 | imbi1i 349 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋)) |
| 8 | | impexp 450 |
. . . . . . 7
⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋))) |
| 9 | | pm4.56 991 |
. . . . . . . . . 10
⊢ ((¬
𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) ↔ ¬ (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) |
| 10 | | df-ne 2941 |
. . . . . . . . . 10
⊢ ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋) |
| 11 | 9, 10 | imbi12i 350 |
. . . . . . . . 9
⊢ (((¬
𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (¬ (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) → ¬ (𝑥 · 𝑦) = 𝑋)) |
| 12 | | con34b 316 |
. . . . . . . . 9
⊢ (((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ (¬ (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈) → ¬ (𝑥 · 𝑦) = 𝑋)) |
| 13 | 11, 12 | bitr4i 278 |
. . . . . . . 8
⊢ (((¬
𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
| 14 | 13 | imbi2i 336 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈) → (𝑥 · 𝑦) ≠ 𝑋)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 15 | 8, 14 | bitri 275 |
. . . . . 6
⊢ ((((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝑈 ∧ ¬ 𝑦 ∈ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 16 | 7, 15 | bitri 275 |
. . . . 5
⊢ (((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 17 | 16 | 2albii 1820 |
. . . 4
⊢
(∀𝑥∀𝑦((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 18 | | r2al 3195 |
. . . 4
⊢
(∀𝑥 ∈
(𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥∀𝑦((𝑥 ∈ (𝐵 ∖ 𝑈) ∧ 𝑦 ∈ (𝐵 ∖ 𝑈)) → (𝑥 · 𝑦) ≠ 𝑋)) |
| 19 | | r2al 3195 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 20 | 17, 18, 19 | 3bitr4i 303 |
. . 3
⊢
(∀𝑥 ∈
(𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) |
| 21 | 1, 20 | anbi12i 628 |
. 2
⊢ ((𝑋 ∈ (𝐵 ∖ 𝑈) ∧ ∀𝑥 ∈ (𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 22 | | isirred2.1 |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 23 | | isirred2.2 |
. . 3
⊢ 𝑈 = (Unit‘𝑅) |
| 24 | | isirred2.3 |
. . 3
⊢ 𝐼 = (Irred‘𝑅) |
| 25 | | eqid 2737 |
. . 3
⊢ (𝐵 ∖ 𝑈) = (𝐵 ∖ 𝑈) |
| 26 | | isirred2.4 |
. . 3
⊢ · =
(.r‘𝑅) |
| 27 | 22, 23, 24, 25, 26 | isirred 20419 |
. 2
⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ (𝐵 ∖ 𝑈) ∧ ∀𝑥 ∈ (𝐵 ∖ 𝑈)∀𝑦 ∈ (𝐵 ∖ 𝑈)(𝑥 · 𝑦) ≠ 𝑋)) |
| 28 | | df-3an 1089 |
. 2
⊢ ((𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈))) ↔ ((𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |
| 29 | 21, 27, 28 | 3bitr4i 303 |
1
⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) |