MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred2 Structured version   Visualization version   GIF version

Theorem isirred2 19447
Description: Expand out the class difference from isirred 19445. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isirred2.1 𝐵 = (Base‘𝑅)
isirred2.2 𝑈 = (Unit‘𝑅)
isirred2.3 𝐼 = (Irred‘𝑅)
isirred2.4 · = (.r𝑅)
Assertion
Ref Expression
isirred2 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isirred2
StepHypRef Expression
1 eldif 3891 . . 3 (𝑋 ∈ (𝐵𝑈) ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
2 eldif 3891 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
3 eldif 3891 . . . . . . . . 9 (𝑦 ∈ (𝐵𝑈) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝑈))
42, 3anbi12i 629 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) ∧ (𝑦𝐵 ∧ ¬ 𝑦𝑈)))
5 an4 655 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) ∧ (𝑦𝐵 ∧ ¬ 𝑦𝑈)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)))
64, 5bitri 278 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)))
76imbi1i 353 . . . . . 6 (((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋))
8 impexp 454 . . . . . . 7 ((((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋)))
9 pm4.56 986 . . . . . . . . . 10 ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) ↔ ¬ (𝑥𝑈𝑦𝑈))
10 df-ne 2988 . . . . . . . . . 10 ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋)
119, 10imbi12i 354 . . . . . . . . 9 (((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (¬ (𝑥𝑈𝑦𝑈) → ¬ (𝑥 · 𝑦) = 𝑋))
12 con34b 319 . . . . . . . . 9 (((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)) ↔ (¬ (𝑥𝑈𝑦𝑈) → ¬ (𝑥 · 𝑦) = 𝑋))
1311, 12bitr4i 281 . . . . . . . 8 (((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)))
1413imbi2i 339 . . . . . . 7 (((𝑥𝐵𝑦𝐵) → ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋)) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
158, 14bitri 278 . . . . . 6 ((((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
167, 15bitri 278 . . . . 5 (((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
17162albii 1822 . . . 4 (∀𝑥𝑦((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
18 r2al 3166 . . . 4 (∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋))
19 r2al 3166 . . . 4 (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
2017, 18, 193bitr4i 306 . . 3 (∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)))
211, 20anbi12i 629 . 2 ((𝑋 ∈ (𝐵𝑈) ∧ ∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑋𝐵 ∧ ¬ 𝑋𝑈) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
22 isirred2.1 . . 3 𝐵 = (Base‘𝑅)
23 isirred2.2 . . 3 𝑈 = (Unit‘𝑅)
24 isirred2.3 . . 3 𝐼 = (Irred‘𝑅)
25 eqid 2798 . . 3 (𝐵𝑈) = (𝐵𝑈)
26 isirred2.4 . . 3 · = (.r𝑅)
2722, 23, 24, 25, 26isirred 19445 . 2 (𝑋𝐼 ↔ (𝑋 ∈ (𝐵𝑈) ∧ ∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋))
28 df-3an 1086 . 2 ((𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))) ↔ ((𝑋𝐵 ∧ ¬ 𝑋𝑈) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
2921, 27, 283bitr4i 306 1 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wal 1536   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  cfv 6324  (class class class)co 7135  Basecbs 16475  .rcmulr 16558  Unitcui 19385  Irredcir 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-irred 19389
This theorem is referenced by:  irredcl  19450  irrednu  19451  irredmul  19455  prmirredlem  20186
  Copyright terms: Public domain W3C validator