MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred2 Structured version   Visualization version   GIF version

Theorem isirred2 19933
Description: Expand out the class difference from isirred 19931. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isirred2.1 𝐵 = (Base‘𝑅)
isirred2.2 𝑈 = (Unit‘𝑅)
isirred2.3 𝐼 = (Irred‘𝑅)
isirred2.4 · = (.r𝑅)
Assertion
Ref Expression
isirred2 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isirred2
StepHypRef Expression
1 eldif 3902 . . 3 (𝑋 ∈ (𝐵𝑈) ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
2 eldif 3902 . . . . . . . . 9 (𝑥 ∈ (𝐵𝑈) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝑈))
3 eldif 3902 . . . . . . . . 9 (𝑦 ∈ (𝐵𝑈) ↔ (𝑦𝐵 ∧ ¬ 𝑦𝑈))
42, 3anbi12i 627 . . . . . . . 8 ((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) ↔ ((𝑥𝐵 ∧ ¬ 𝑥𝑈) ∧ (𝑦𝐵 ∧ ¬ 𝑦𝑈)))
5 an4 653 . . . . . . . 8 (((𝑥𝐵 ∧ ¬ 𝑥𝑈) ∧ (𝑦𝐵 ∧ ¬ 𝑦𝑈)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)))
64, 5bitri 274 . . . . . . 7 ((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)))
76imbi1i 350 . . . . . 6 (((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋))
8 impexp 451 . . . . . . 7 ((((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋)))
9 pm4.56 986 . . . . . . . . . 10 ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) ↔ ¬ (𝑥𝑈𝑦𝑈))
10 df-ne 2946 . . . . . . . . . 10 ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋)
119, 10imbi12i 351 . . . . . . . . 9 (((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ (¬ (𝑥𝑈𝑦𝑈) → ¬ (𝑥 · 𝑦) = 𝑋))
12 con34b 316 . . . . . . . . 9 (((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)) ↔ (¬ (𝑥𝑈𝑦𝑈) → ¬ (𝑥 · 𝑦) = 𝑋))
1311, 12bitr4i 277 . . . . . . . 8 (((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)))
1413imbi2i 336 . . . . . . 7 (((𝑥𝐵𝑦𝐵) → ((¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈) → (𝑥 · 𝑦) ≠ 𝑋)) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
158, 14bitri 274 . . . . . 6 ((((𝑥𝐵𝑦𝐵) ∧ (¬ 𝑥𝑈 ∧ ¬ 𝑦𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
167, 15bitri 274 . . . . 5 (((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
17162albii 1827 . . . 4 (∀𝑥𝑦((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
18 r2al 3127 . . . 4 (∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵𝑈) ∧ 𝑦 ∈ (𝐵𝑈)) → (𝑥 · 𝑦) ≠ 𝑋))
19 r2al 3127 . . . 4 (∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
2017, 18, 193bitr4i 303 . . 3 (∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈)))
211, 20anbi12i 627 . 2 ((𝑋 ∈ (𝐵𝑈) ∧ ∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋) ↔ ((𝑋𝐵 ∧ ¬ 𝑋𝑈) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
22 isirred2.1 . . 3 𝐵 = (Base‘𝑅)
23 isirred2.2 . . 3 𝑈 = (Unit‘𝑅)
24 isirred2.3 . . 3 𝐼 = (Irred‘𝑅)
25 eqid 2740 . . 3 (𝐵𝑈) = (𝐵𝑈)
26 isirred2.4 . . 3 · = (.r𝑅)
2722, 23, 24, 25, 26isirred 19931 . 2 (𝑋𝐼 ↔ (𝑋 ∈ (𝐵𝑈) ∧ ∀𝑥 ∈ (𝐵𝑈)∀𝑦 ∈ (𝐵𝑈)(𝑥 · 𝑦) ≠ 𝑋))
28 df-3an 1088 . 2 ((𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))) ↔ ((𝑋𝐵 ∧ ¬ 𝑋𝑈) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
2921, 27, 283bitr4i 303 1 (𝑋𝐼 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥 · 𝑦) = 𝑋 → (𝑥𝑈𝑦𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wal 1540   = wceq 1542  wcel 2110  wne 2945  wral 3066  cdif 3889  cfv 6431  (class class class)co 7269  Basecbs 16902  .rcmulr 16953  Unitcui 19871  Irredcir 19872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6389  df-fun 6433  df-fv 6439  df-ov 7272  df-irred 19875
This theorem is referenced by:  irredcl  19936  irrednu  19937  irredmul  19941  prmirredlem  20684
  Copyright terms: Public domain W3C validator