MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn3 Structured version   Visualization version   GIF version

Theorem isdomn3 20600
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b 𝐵 = (Base‘𝑅)
isdomn3.z 0 = (0g𝑅)
isdomn3.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
isdomn3 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))

Proof of Theorem isdomn3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2729 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn3.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 20590 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
65, 3isnzr 20399 . . . . 5 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ))
76anbi1i 624 . . . 4 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
8 anass 468 . . . 4 (((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
97, 8bitri 275 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
101, 5ringidcl 20150 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
11 eldifsn 4746 . . . . . . . 8 ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ 0 ))
1211baibr 536 . . . . . . 7 ((1r𝑅) ∈ 𝐵 → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
1310, 12syl 17 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
141, 2ringcl 20135 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
15143expb 1120 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1615biantrurd 532 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 )))
17 eldifsn 4746 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 ))
1816, 17bitr4di 289 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
1918imbi2d 340 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
20192ralbidva 3197 . . . . . . 7 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
21 con34b 316 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
22 neanior 3018 . . . . . . . . . 10 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
23 df-ne 2926 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ¬ (𝑥(.r𝑅)𝑦) = 0 )
2422, 23imbi12i 350 . . . . . . . . 9 (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2521, 24bitr4i 278 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
26252ralbii 3108 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
27 impexp 450 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
28 an4 656 . . . . . . . . . . . 12 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
29 eldifsn 4746 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
30 eldifsn 4746 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
3129, 30anbi12i 628 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
3228, 31bitr4i 278 . . . . . . . . . . 11 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })))
3332imbi1i 349 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3427, 33bitr3i 277 . . . . . . . . 9 (((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
35342albii 1820 . . . . . . . 8 (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
36 r2al 3171 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
37 r2al 3171 . . . . . . . 8 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3835, 36, 373bitr4ri 304 . . . . . . 7 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3920, 26, 383bitr4g 314 . . . . . 6 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
4013, 39anbi12d 632 . . . . 5 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
41 isdomn3.u . . . . . . 7 𝑈 = (mulGrp‘𝑅)
4241ringmgp 20124 . . . . . 6 (𝑅 ∈ Ring → 𝑈 ∈ Mnd)
4341, 1mgpbas 20030 . . . . . . . . 9 𝐵 = (Base‘𝑈)
4441, 5ringidval 20068 . . . . . . . . 9 (1r𝑅) = (0g𝑈)
4541, 2mgpplusg 20029 . . . . . . . . 9 (.r𝑅) = (+g𝑈)
4643, 44, 45issubm 18706 . . . . . . . 8 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
47 3anass 1094 . . . . . . . 8 (((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
4846, 47bitrdi 287 . . . . . . 7 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))))
49 difss 4095 . . . . . . . 8 (𝐵 ∖ { 0 }) ⊆ 𝐵
5049biantrur 530 . . . . . . 7 (((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5148, 50bitr4di 289 . . . . . 6 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5242, 51syl 17 . . . . 5 (𝑅 ∈ Ring → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5340, 52bitr4d 282 . . . 4 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
5453pm5.32i 574 . . 3 ((𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
559, 54bitri 275 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
564, 55bitri 275 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3908  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  0gc0g 17378  Mndcmnd 18637  SubMndcsubmnd 18685  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  NzRingcnzr 20397  Domncdomn 20577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mgp 20026  df-ur 20067  df-ring 20120  df-nzr 20398  df-domn 20580
This theorem is referenced by:  fracfld  33231  zringfrac  33498  deg1mhm  43162
  Copyright terms: Public domain W3C validator