MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn3 Structured version   Visualization version   GIF version

Theorem isdomn3 20680
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b 𝐵 = (Base‘𝑅)
isdomn3.z 0 = (0g𝑅)
isdomn3.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
isdomn3 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))

Proof of Theorem isdomn3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn3.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 20670 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 eqid 2736 . . . . . 6 (1r𝑅) = (1r𝑅)
65, 3isnzr 20479 . . . . 5 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ))
76anbi1i 624 . . . 4 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
8 anass 468 . . . 4 (((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
97, 8bitri 275 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
101, 5ringidcl 20230 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
11 eldifsn 4767 . . . . . . . 8 ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ 0 ))
1211baibr 536 . . . . . . 7 ((1r𝑅) ∈ 𝐵 → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
1310, 12syl 17 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
141, 2ringcl 20215 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
15143expb 1120 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1615biantrurd 532 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 )))
17 eldifsn 4767 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 ))
1816, 17bitr4di 289 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
1918imbi2d 340 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
20192ralbidva 3207 . . . . . . 7 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
21 con34b 316 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
22 neanior 3026 . . . . . . . . . 10 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
23 df-ne 2934 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ¬ (𝑥(.r𝑅)𝑦) = 0 )
2422, 23imbi12i 350 . . . . . . . . 9 (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2521, 24bitr4i 278 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
26252ralbii 3116 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
27 impexp 450 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
28 an4 656 . . . . . . . . . . . 12 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
29 eldifsn 4767 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
30 eldifsn 4767 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
3129, 30anbi12i 628 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
3228, 31bitr4i 278 . . . . . . . . . . 11 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })))
3332imbi1i 349 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3427, 33bitr3i 277 . . . . . . . . 9 (((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
35342albii 1820 . . . . . . . 8 (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
36 r2al 3181 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
37 r2al 3181 . . . . . . . 8 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3835, 36, 373bitr4ri 304 . . . . . . 7 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3920, 26, 383bitr4g 314 . . . . . 6 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
4013, 39anbi12d 632 . . . . 5 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
41 isdomn3.u . . . . . . 7 𝑈 = (mulGrp‘𝑅)
4241ringmgp 20204 . . . . . 6 (𝑅 ∈ Ring → 𝑈 ∈ Mnd)
4341, 1mgpbas 20110 . . . . . . . . 9 𝐵 = (Base‘𝑈)
4441, 5ringidval 20148 . . . . . . . . 9 (1r𝑅) = (0g𝑈)
4541, 2mgpplusg 20109 . . . . . . . . 9 (.r𝑅) = (+g𝑈)
4643, 44, 45issubm 18786 . . . . . . . 8 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
47 3anass 1094 . . . . . . . 8 (((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
4846, 47bitrdi 287 . . . . . . 7 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))))
49 difss 4116 . . . . . . . 8 (𝐵 ∖ { 0 }) ⊆ 𝐵
5049biantrur 530 . . . . . . 7 (((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5148, 50bitr4di 289 . . . . . 6 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5242, 51syl 17 . . . . 5 (𝑅 ∈ Ring → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5340, 52bitr4d 282 . . . 4 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
5453pm5.32i 574 . . 3 ((𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
559, 54bitri 275 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
564, 55bitri 275 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  wss 3931  {csn 4606  cfv 6536  (class class class)co 7410  Basecbs 17233  .rcmulr 17277  0gc0g 17458  Mndcmnd 18717  SubMndcsubmnd 18765  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  NzRingcnzr 20477  Domncdomn 20657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mgp 20106  df-ur 20147  df-ring 20200  df-nzr 20478  df-domn 20660
This theorem is referenced by:  fracfld  33307  zringfrac  33574  deg1mhm  43199
  Copyright terms: Public domain W3C validator