Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn3 Structured version   Visualization version   GIF version

Theorem isdomn3 40148
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b 𝐵 = (Base‘𝑅)
isdomn3.z 0 = (0g𝑅)
isdomn3.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
isdomn3 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))

Proof of Theorem isdomn3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2798 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn3.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 20060 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 eqid 2798 . . . . . 6 (1r𝑅) = (1r𝑅)
65, 3isnzr 20025 . . . . 5 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ))
76anbi1i 626 . . . 4 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
8 anass 472 . . . 4 (((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
97, 8bitri 278 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
101, 5ringidcl 19314 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
11 eldifsn 4680 . . . . . . . 8 ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ 0 ))
1211baibr 540 . . . . . . 7 ((1r𝑅) ∈ 𝐵 → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
1310, 12syl 17 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
141, 2ringcl 19307 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
15143expb 1117 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1615biantrurd 536 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 )))
17 eldifsn 4680 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 ))
1816, 17syl6bbr 292 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
1918imbi2d 344 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
20192ralbidva 3163 . . . . . . 7 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
21 con34b 319 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
22 neanior 3079 . . . . . . . . . 10 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
23 df-ne 2988 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ¬ (𝑥(.r𝑅)𝑦) = 0 )
2422, 23imbi12i 354 . . . . . . . . 9 (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2521, 24bitr4i 281 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
26252ralbii 3134 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
27 impexp 454 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
28 an4 655 . . . . . . . . . . . 12 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
29 eldifsn 4680 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
30 eldifsn 4680 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
3129, 30anbi12i 629 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
3228, 31bitr4i 281 . . . . . . . . . . 11 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })))
3332imbi1i 353 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3427, 33bitr3i 280 . . . . . . . . 9 (((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
35342albii 1822 . . . . . . . 8 (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
36 r2al 3166 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
37 r2al 3166 . . . . . . . 8 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3835, 36, 373bitr4ri 307 . . . . . . 7 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3920, 26, 383bitr4g 317 . . . . . 6 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
4013, 39anbi12d 633 . . . . 5 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
41 isdomn3.u . . . . . . 7 𝑈 = (mulGrp‘𝑅)
4241ringmgp 19296 . . . . . 6 (𝑅 ∈ Ring → 𝑈 ∈ Mnd)
4341, 1mgpbas 19238 . . . . . . . . 9 𝐵 = (Base‘𝑈)
4441, 5ringidval 19246 . . . . . . . . 9 (1r𝑅) = (0g𝑈)
4541, 2mgpplusg 19236 . . . . . . . . 9 (.r𝑅) = (+g𝑈)
4643, 44, 45issubm 17960 . . . . . . . 8 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
47 3anass 1092 . . . . . . . 8 (((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
4846, 47syl6bb 290 . . . . . . 7 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))))
49 difss 4059 . . . . . . . 8 (𝐵 ∖ { 0 }) ⊆ 𝐵
5049biantrur 534 . . . . . . 7 (((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5148, 50syl6bbr 292 . . . . . 6 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5242, 51syl 17 . . . . 5 (𝑅 ∈ Ring → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5340, 52bitr4d 285 . . . 4 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
5453pm5.32i 578 . . 3 ((𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
559, 54bitri 278 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
564, 55bitri 278 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wal 1536   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881  {csn 4525  cfv 6324  (class class class)co 7135  Basecbs 16475  .rcmulr 16558  0gc0g 16705  Mndcmnd 17903  SubMndcsubmnd 17947  mulGrpcmgp 19232  1rcur 19244  Ringcrg 19290  NzRingcnzr 20023  Domncdomn 20046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mgp 19233  df-ur 19245  df-ring 19292  df-nzr 20024  df-domn 20050
This theorem is referenced by:  deg1mhm  40151
  Copyright terms: Public domain W3C validator