Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn3 Structured version   Visualization version   GIF version

Theorem isdomn3 40945
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b 𝐵 = (Base‘𝑅)
isdomn3.z 0 = (0g𝑅)
isdomn3.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
isdomn3 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))

Proof of Theorem isdomn3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3 𝐵 = (Base‘𝑅)
2 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
3 isdomn3.z . . 3 0 = (0g𝑅)
41, 2, 3isdomn 20478 . 2 (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
5 eqid 2738 . . . . . 6 (1r𝑅) = (1r𝑅)
65, 3isnzr 20443 . . . . 5 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ))
76anbi1i 623 . . . 4 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))))
8 anass 468 . . . 4 (((𝑅 ∈ Ring ∧ (1r𝑅) ≠ 0 ) ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
97, 8bitri 274 . . 3 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))))
101, 5ringidcl 19722 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
11 eldifsn 4717 . . . . . . . 8 ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ↔ ((1r𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ 0 ))
1211baibr 536 . . . . . . 7 ((1r𝑅) ∈ 𝐵 → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
1310, 12syl 17 . . . . . 6 (𝑅 ∈ Ring → ((1r𝑅) ≠ 0 ↔ (1r𝑅) ∈ (𝐵 ∖ { 0 })))
141, 2ringcl 19715 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
15143expb 1118 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑅)𝑦) ∈ 𝐵)
1615biantrurd 532 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 )))
17 eldifsn 4717 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑥(.r𝑅)𝑦) ∈ 𝐵 ∧ (𝑥(.r𝑅)𝑦) ≠ 0 ))
1816, 17bitr4di 288 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
1918imbi2d 340 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
20192ralbidva 3121 . . . . . . 7 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
21 con34b 315 . . . . . . . . 9 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
22 neanior 3036 . . . . . . . . . 10 ((𝑥0𝑦0 ) ↔ ¬ (𝑥 = 0𝑦 = 0 ))
23 df-ne 2943 . . . . . . . . . 10 ((𝑥(.r𝑅)𝑦) ≠ 0 ↔ ¬ (𝑥(.r𝑅)𝑦) = 0 )
2422, 23imbi12i 350 . . . . . . . . 9 (((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ) ↔ (¬ (𝑥 = 0𝑦 = 0 ) → ¬ (𝑥(.r𝑅)𝑦) = 0 ))
2521, 24bitr4i 277 . . . . . . . 8 (((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
26252ralbii 3091 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ≠ 0 ))
27 impexp 450 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
28 an4 652 . . . . . . . . . . . 12 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
29 eldifsn 4717 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥𝐵𝑥0 ))
30 eldifsn 4717 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) ↔ (𝑦𝐵𝑦0 ))
3129, 30anbi12i 626 . . . . . . . . . . . 12 ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥𝐵𝑥0 ) ∧ (𝑦𝐵𝑦0 )))
3228, 31bitr4i 277 . . . . . . . . . . 11 (((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) ↔ (𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })))
3332imbi1i 349 . . . . . . . . . 10 ((((𝑥𝐵𝑦𝐵) ∧ (𝑥0𝑦0 )) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3427, 33bitr3i 276 . . . . . . . . 9 (((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
35342albii 1824 . . . . . . . 8 (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
36 r2al 3124 . . . . . . . 8 (∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
37 r2al 3124 . . . . . . . 8 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝑦((𝑥 ∈ (𝐵 ∖ { 0 }) ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3835, 36, 373bitr4ri 303 . . . . . . 7 (∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥0𝑦0 ) → (𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
3920, 26, 383bitr4g 313 . . . . . 6 (𝑅 ∈ Ring → (∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )) ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))
4013, 39anbi12d 630 . . . . 5 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
41 isdomn3.u . . . . . . 7 𝑈 = (mulGrp‘𝑅)
4241ringmgp 19704 . . . . . 6 (𝑅 ∈ Ring → 𝑈 ∈ Mnd)
4341, 1mgpbas 19641 . . . . . . . . 9 𝐵 = (Base‘𝑈)
4441, 5ringidval 19654 . . . . . . . . 9 (1r𝑅) = (0g𝑈)
4541, 2mgpplusg 19639 . . . . . . . . 9 (.r𝑅) = (+g𝑈)
4643, 44, 45issubm 18357 . . . . . . . 8 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
47 3anass 1093 . . . . . . . 8 (((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ (1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
4846, 47bitrdi 286 . . . . . . 7 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })))))
49 difss 4062 . . . . . . . 8 (𝐵 ∖ { 0 }) ⊆ 𝐵
5049biantrur 530 . . . . . . 7 (((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 })) ↔ ((𝐵 ∖ { 0 }) ⊆ 𝐵 ∧ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5148, 50bitr4di 288 . . . . . 6 (𝑈 ∈ Mnd → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5242, 51syl 17 . . . . 5 (𝑅 ∈ Ring → ((𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈) ↔ ((1r𝑅) ∈ (𝐵 ∖ { 0 }) ∧ ∀𝑥 ∈ (𝐵 ∖ { 0 })∀𝑦 ∈ (𝐵 ∖ { 0 })(𝑥(.r𝑅)𝑦) ∈ (𝐵 ∖ { 0 }))))
5340, 52bitr4d 281 . . . 4 (𝑅 ∈ Ring → (((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
5453pm5.32i 574 . . 3 ((𝑅 ∈ Ring ∧ ((1r𝑅) ≠ 0 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 )))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
559, 54bitri 274 . 2 ((𝑅 ∈ NzRing ∧ ∀𝑥𝐵𝑦𝐵 ((𝑥(.r𝑅)𝑦) = 0 → (𝑥 = 0𝑦 = 0 ))) ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
564, 55bitri 274 1 (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐵 ∖ { 0 }) ∈ (SubMnd‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wne 2942  wral 3063  cdif 3880  wss 3883  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  0gc0g 17067  Mndcmnd 18300  SubMndcsubmnd 18344  mulGrpcmgp 19635  1rcur 19652  Ringcrg 19698  NzRingcnzr 20441  Domncdomn 20464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mgp 19636  df-ur 19653  df-ring 19700  df-nzr 20442  df-domn 20468
This theorem is referenced by:  deg1mhm  40948
  Copyright terms: Public domain W3C validator