![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dff14a | Structured version Visualization version GIF version |
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
Ref | Expression |
---|---|
dff14a | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff13 7254 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
2 | con34b 316 | . . . . 5 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) | |
3 | df-ne 2942 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
4 | 3 | bicomi 223 | . . . . . 6 ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
5 | df-ne 2942 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ ¬ (𝐹‘𝑥) = (𝐹‘𝑦)) | |
6 | 5 | bicomi 223 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
7 | 4, 6 | imbi12i 351 | . . . . 5 ⊢ ((¬ 𝑥 = 𝑦 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)) ↔ (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
8 | 2, 7 | bitri 275 | . . . 4 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
9 | 8 | 2ralbii 3129 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
10 | 9 | anbi2i 624 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
11 | 1, 10 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ≠ wne 2941 ∀wral 3062 ⟶wf 6540 –1-1→wf1 6541 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fv 6552 |
This theorem is referenced by: dff14b 7270 pthdlem1 29023 fldhmf1 40955 nnfoctbdjlem 45171 |
Copyright terms: Public domain | W3C validator |