MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14a Structured version   Visualization version   GIF version

Theorem dff14a 7124
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14a (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff14a
StepHypRef Expression
1 dff13 7109 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2 con34b 315 . . . . 5 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3 df-ne 2943 . . . . . . 7 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
43bicomi 223 . . . . . 6 𝑥 = 𝑦𝑥𝑦)
5 df-ne 2943 . . . . . . 7 ((𝐹𝑥) ≠ (𝐹𝑦) ↔ ¬ (𝐹𝑥) = (𝐹𝑦))
65bicomi 223 . . . . . 6 (¬ (𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑥) ≠ (𝐹𝑦))
74, 6imbi12i 350 . . . . 5 ((¬ 𝑥 = 𝑦 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
82, 7bitri 274 . . . 4 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
982ralbii 3091 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
109anbi2i 622 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
111, 10bitri 274 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wne 2942  wral 3063  wf 6414  1-1wf1 6415  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fv 6426
This theorem is referenced by:  dff14b  7125  pthdlem1  28035  nnfoctbdjlem  43883
  Copyright terms: Public domain W3C validator