| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff14a | Structured version Visualization version GIF version | ||
| Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| Ref | Expression |
|---|---|
| dff14a | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 7229 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
| 2 | con34b 316 | . . . . 5 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) | |
| 3 | df-ne 2926 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
| 4 | 3 | bicomi 224 | . . . . . 6 ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
| 5 | df-ne 2926 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ ¬ (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 6 | 5 | bicomi 224 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
| 7 | 4, 6 | imbi12i 350 | . . . . 5 ⊢ ((¬ 𝑥 = 𝑦 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)) ↔ (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 8 | 2, 7 | bitri 275 | . . . 4 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 9 | 8 | 2ralbii 3108 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
| 11 | 1, 10 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ≠ wne 2925 ∀wral 3044 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fv 6519 |
| This theorem is referenced by: dff14b 7246 f1ounsn 7247 resf1extb 7910 pthdlem1 29696 fldhmf1 42078 nnfoctbdjlem 46453 isubgr3stgrlem4 47968 |
| Copyright terms: Public domain | W3C validator |