| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff14a | Structured version Visualization version GIF version | ||
| Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
| Ref | Expression |
|---|---|
| dff14a | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 7194 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | |
| 2 | con34b 316 | . . . . 5 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦))) | |
| 3 | df-ne 2930 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
| 4 | 3 | bicomi 224 | . . . . . 6 ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) |
| 5 | df-ne 2930 | . . . . . . 7 ⊢ ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ ¬ (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 6 | 5 | bicomi 224 | . . . . . 6 ⊢ (¬ (𝐹‘𝑥) = (𝐹‘𝑦) ↔ (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
| 7 | 4, 6 | imbi12i 350 | . . . . 5 ⊢ ((¬ 𝑥 = 𝑦 → ¬ (𝐹‘𝑥) = (𝐹‘𝑦)) ↔ (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 8 | 2, 7 | bitri 275 | . . . 4 ⊢ (((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 9 | 8 | 2ralbii 3108 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦))) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
| 11 | 1, 10 | bitri 275 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐹‘𝑥) ≠ (𝐹‘𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ≠ wne 2929 ∀wral 3048 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fv 6494 |
| This theorem is referenced by: dff14b 7211 f1ounsn 7212 resf1extb 7870 pthdlem1 29746 fldhmf1 42203 nnfoctbdjlem 46577 isubgr3stgrlem4 48093 |
| Copyright terms: Public domain | W3C validator |