MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14a Structured version   Visualization version   GIF version

Theorem dff14a 7211
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14a (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff14a
StepHypRef Expression
1 dff13 7195 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2 con34b 316 . . . . 5 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (¬ 𝑥 = 𝑦 → ¬ (𝐹𝑥) = (𝐹𝑦)))
3 df-ne 2926 . . . . . . 7 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
43bicomi 224 . . . . . 6 𝑥 = 𝑦𝑥𝑦)
5 df-ne 2926 . . . . . . 7 ((𝐹𝑥) ≠ (𝐹𝑦) ↔ ¬ (𝐹𝑥) = (𝐹𝑦))
65bicomi 224 . . . . . 6 (¬ (𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑥) ≠ (𝐹𝑦))
74, 6imbi12i 350 . . . . 5 ((¬ 𝑥 = 𝑦 → ¬ (𝐹𝑥) = (𝐹𝑦)) ↔ (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
82, 7bitri 275 . . . 4 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
982ralbii 3104 . . 3 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
109anbi2i 623 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
111, 10bitri 275 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wne 2925  wral 3044  wf 6482  1-1wf1 6483  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fv 6494
This theorem is referenced by:  dff14b  7212  f1ounsn  7213  resf1extb  7874  pthdlem1  29729  fldhmf1  42063  nnfoctbdjlem  46437  isubgr3stgrlem4  47954
  Copyright terms: Public domain W3C validator