Proof of Theorem tosglblem
| Step | Hyp | Ref
| Expression |
| 1 | | tosglb.1 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Toset) |
| 2 | 1 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → 𝐾 ∈ Toset) |
| 3 | | tosglb.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐴 ⊆ 𝐵) |
| 5 | 4 | sselda 3963 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ 𝐵) |
| 6 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → 𝑎 ∈ 𝐵) |
| 7 | | tosglb.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐾) |
| 8 | | tosglb.e |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 9 | | tosglb.l |
. . . . . . 7
⊢ < =
(lt‘𝐾) |
| 10 | 7, 8, 9 | tltnle 18437 |
. . . . . 6
⊢ ((𝐾 ∈ Toset ∧ 𝑏 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑏 < 𝑎 ↔ ¬ 𝑎 ≤ 𝑏)) |
| 11 | 2, 5, 6, 10 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → (𝑏 < 𝑎 ↔ ¬ 𝑎 ≤ 𝑏)) |
| 12 | 11 | con2bid 354 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → (𝑎 ≤ 𝑏 ↔ ¬ 𝑏 < 𝑎)) |
| 13 | 12 | ralbidva 3162 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ↔ ∀𝑏 ∈ 𝐴 ¬ 𝑏 < 𝑎)) |
| 14 | 3 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 15 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ 𝐴) |
| 16 | 14, 15 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ 𝐵) |
| 17 | 7, 8, 9 | tltnle 18437 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Toset ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 ≤ 𝑏)) |
| 18 | 1, 17 | syl3an1 1163 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 ≤ 𝑏)) |
| 19 | 18 | 3com23 1126 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 ≤ 𝑏)) |
| 20 | 19 | 3expa 1118 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 ≤ 𝑏)) |
| 21 | 20 | con2bid 354 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐵) ∧ 𝑏 ∈ 𝐵) → (𝑐 ≤ 𝑏 ↔ ¬ 𝑏 < 𝑐)) |
| 22 | 16, 21 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐵) ∧ 𝑏 ∈ 𝐴) → (𝑐 ≤ 𝑏 ↔ ¬ 𝑏 < 𝑐)) |
| 23 | 22 | ralbidva 3162 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐵) → (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 ↔ ∀𝑏 ∈ 𝐴 ¬ 𝑏 < 𝑐)) |
| 24 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑑 → (𝑏 < 𝑐 ↔ 𝑑 < 𝑐)) |
| 25 | 24 | notbid 318 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑑 → (¬ 𝑏 < 𝑐 ↔ ¬ 𝑑 < 𝑐)) |
| 26 | 25 | cbvralvw 3224 |
. . . . . . . . . 10
⊢
(∀𝑏 ∈
𝐴 ¬ 𝑏 < 𝑐 ↔ ∀𝑑 ∈ 𝐴 ¬ 𝑑 < 𝑐) |
| 27 | | ralnex 3063 |
. . . . . . . . . 10
⊢
(∀𝑑 ∈
𝐴 ¬ 𝑑 < 𝑐 ↔ ¬ ∃𝑑 ∈ 𝐴 𝑑 < 𝑐) |
| 28 | 26, 27 | bitri 275 |
. . . . . . . . 9
⊢
(∀𝑏 ∈
𝐴 ¬ 𝑏 < 𝑐 ↔ ¬ ∃𝑑 ∈ 𝐴 𝑑 < 𝑐) |
| 29 | 23, 28 | bitrdi 287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐵) → (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 ↔ ¬ ∃𝑑 ∈ 𝐴 𝑑 < 𝑐)) |
| 30 | 29 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 ↔ ¬ ∃𝑑 ∈ 𝐴 𝑑 < 𝑐)) |
| 31 | 1 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝐾 ∈ Toset) |
| 32 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝑎 ∈ 𝐵) |
| 33 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → 𝑐 ∈ 𝐵) |
| 34 | 7, 8, 9 | tltnle 18437 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Toset ∧ 𝑎 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 ≤ 𝑎)) |
| 35 | 31, 32, 33, 34 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 ≤ 𝑎)) |
| 36 | 35 | con2bid 354 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → (𝑐 ≤ 𝑎 ↔ ¬ 𝑎 < 𝑐)) |
| 37 | 30, 36 | imbi12d 344 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎) ↔ (¬ ∃𝑑 ∈ 𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐))) |
| 38 | | con34b 316 |
. . . . . 6
⊢ ((𝑎 < 𝑐 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑐) ↔ (¬ ∃𝑑 ∈ 𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐)) |
| 39 | 37, 38 | bitr4di 289 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑐 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎) ↔ (𝑎 < 𝑐 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑐))) |
| 40 | 39 | ralbidva 3162 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎) ↔ ∀𝑐 ∈ 𝐵 (𝑎 < 𝑐 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑐))) |
| 41 | | breq2 5128 |
. . . . . 6
⊢ (𝑏 = 𝑐 → (𝑎 < 𝑏 ↔ 𝑎 < 𝑐)) |
| 42 | | breq2 5128 |
. . . . . . 7
⊢ (𝑏 = 𝑐 → (𝑑 < 𝑏 ↔ 𝑑 < 𝑐)) |
| 43 | 42 | rexbidv 3165 |
. . . . . 6
⊢ (𝑏 = 𝑐 → (∃𝑑 ∈ 𝐴 𝑑 < 𝑏 ↔ ∃𝑑 ∈ 𝐴 𝑑 < 𝑐)) |
| 44 | 41, 43 | imbi12d 344 |
. . . . 5
⊢ (𝑏 = 𝑐 → ((𝑎 < 𝑏 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑏) ↔ (𝑎 < 𝑐 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑐))) |
| 45 | 44 | cbvralvw 3224 |
. . . 4
⊢
(∀𝑏 ∈
𝐵 (𝑎 < 𝑏 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑏) ↔ ∀𝑐 ∈ 𝐵 (𝑎 < 𝑐 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑐)) |
| 46 | 40, 45 | bitr4di 289 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎) ↔ ∀𝑏 ∈ 𝐵 (𝑎 < 𝑏 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑏))) |
| 47 | 13, 46 | anbi12d 632 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ 𝐵 (𝑎 < 𝑏 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑏)))) |
| 48 | | vex 3468 |
. . . . . 6
⊢ 𝑎 ∈ V |
| 49 | | vex 3468 |
. . . . . 6
⊢ 𝑏 ∈ V |
| 50 | 48, 49 | brcnv 5867 |
. . . . 5
⊢ (𝑎◡ < 𝑏 ↔ 𝑏 < 𝑎) |
| 51 | 50 | notbii 320 |
. . . 4
⊢ (¬
𝑎◡ < 𝑏 ↔ ¬ 𝑏 < 𝑎) |
| 52 | 51 | ralbii 3083 |
. . 3
⊢
(∀𝑏 ∈
𝐴 ¬ 𝑎◡
<
𝑏 ↔ ∀𝑏 ∈ 𝐴 ¬ 𝑏 < 𝑎) |
| 53 | 49, 48 | brcnv 5867 |
. . . . 5
⊢ (𝑏◡ < 𝑎 ↔ 𝑎 < 𝑏) |
| 54 | | vex 3468 |
. . . . . . 7
⊢ 𝑑 ∈ V |
| 55 | 49, 54 | brcnv 5867 |
. . . . . 6
⊢ (𝑏◡ < 𝑑 ↔ 𝑑 < 𝑏) |
| 56 | 55 | rexbii 3084 |
. . . . 5
⊢
(∃𝑑 ∈
𝐴 𝑏◡
<
𝑑 ↔ ∃𝑑 ∈ 𝐴 𝑑 < 𝑏) |
| 57 | 53, 56 | imbi12i 350 |
. . . 4
⊢ ((𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡
<
𝑑) ↔ (𝑎 < 𝑏 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑏)) |
| 58 | 57 | ralbii 3083 |
. . 3
⊢
(∀𝑏 ∈
𝐵 (𝑏◡
<
𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡
<
𝑑) ↔ ∀𝑏 ∈ 𝐵 (𝑎 < 𝑏 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑏)) |
| 59 | 52, 58 | anbi12i 628 |
. 2
⊢
((∀𝑏 ∈
𝐴 ¬ 𝑎◡
<
𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡
<
𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡
<
𝑑)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏 ∈ 𝐵 (𝑎 < 𝑏 → ∃𝑑 ∈ 𝐴 𝑑 < 𝑏))) |
| 60 | 47, 59 | bitr4di 289 |
1
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡
<
𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡
<
𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡
<
𝑑)))) |