Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglblem Structured version   Visualization version   GIF version

Theorem tosglblem 32966
Description: Lemma for tosglb 32967 and xrsclat 33003. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
tosglb.e = (le‘𝐾)
Assertion
Ref Expression
tosglblem ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑, <   𝐴,𝑎,𝑏,𝑐,𝑑   𝐵,𝑎,𝑏,𝑐,𝑑   𝐾,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝐾(𝑑)   (𝑎,𝑏,𝑐,𝑑)

Proof of Theorem tosglblem
StepHypRef Expression
1 tosglb.1 . . . . . . 7 (𝜑𝐾 ∈ Toset)
21ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝐾 ∈ Toset)
3 tosglb.2 . . . . . . . 8 (𝜑𝐴𝐵)
43adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐴𝐵)
54sselda 3931 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
6 simplr 768 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑎𝐵)
7 tosglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 tosglb.e . . . . . . 7 = (le‘𝐾)
9 tosglb.l . . . . . . 7 < = (lt‘𝐾)
107, 8, 9tltnle 18336 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑎𝐵) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
112, 5, 6, 10syl3anc 1373 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
1211con2bid 354 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑎 𝑏 ↔ ¬ 𝑏 < 𝑎))
1312ralbidva 3155 . . 3 ((𝜑𝑎𝐵) → (∀𝑏𝐴 𝑎 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎))
143ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝐴𝐵)
15 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐴)
1614, 15sseldd 3932 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
177, 8, 9tltnle 18336 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
181, 17syl3an1 1163 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
19183com23 1126 . . . . . . . . . . . . 13 ((𝜑𝑐𝐵𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
20193expa 1118 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
2120con2bid 354 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2216, 21syldan 591 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2322ralbidva 3155 . . . . . . . . 9 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑐))
24 breq1 5098 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝑏 < 𝑐𝑑 < 𝑐))
2524notbid 318 . . . . . . . . . . 11 (𝑏 = 𝑑 → (¬ 𝑏 < 𝑐 ↔ ¬ 𝑑 < 𝑐))
2625cbvralvw 3212 . . . . . . . . . 10 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ∀𝑑𝐴 ¬ 𝑑 < 𝑐)
27 ralnex 3060 . . . . . . . . . 10 (∀𝑑𝐴 ¬ 𝑑 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2826, 27bitri 275 . . . . . . . . 9 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2923, 28bitrdi 287 . . . . . . . 8 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
3029adantlr 715 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
311ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐾 ∈ Toset)
32 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
33 simpr 484 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
347, 8, 9tltnle 18336 . . . . . . . . 9 ((𝐾 ∈ Toset ∧ 𝑎𝐵𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3531, 32, 33, 34syl3anc 1373 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3635con2bid 354 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑐 𝑎 ↔ ¬ 𝑎 < 𝑐))
3730, 36imbi12d 344 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐)))
38 con34b 316 . . . . . 6 ((𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐))
3937, 38bitr4di 289 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4039ralbidva 3155 . . . 4 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
41 breq2 5099 . . . . . 6 (𝑏 = 𝑐 → (𝑎 < 𝑏𝑎 < 𝑐))
42 breq2 5099 . . . . . . 7 (𝑏 = 𝑐 → (𝑑 < 𝑏𝑑 < 𝑐))
4342rexbidv 3158 . . . . . 6 (𝑏 = 𝑐 → (∃𝑑𝐴 𝑑 < 𝑏 ↔ ∃𝑑𝐴 𝑑 < 𝑐))
4441, 43imbi12d 344 . . . . 5 (𝑏 = 𝑐 → ((𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4544cbvralvw 3212 . . . 4 (∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐))
4640, 45bitr4di 289 . . 3 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
4713, 46anbi12d 632 . 2 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))))
48 vex 3442 . . . . . 6 𝑎 ∈ V
49 vex 3442 . . . . . 6 𝑏 ∈ V
5048, 49brcnv 5829 . . . . 5 (𝑎 < 𝑏𝑏 < 𝑎)
5150notbii 320 . . . 4 𝑎 < 𝑏 ↔ ¬ 𝑏 < 𝑎)
5251ralbii 3080 . . 3 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎)
5349, 48brcnv 5829 . . . . 5 (𝑏 < 𝑎𝑎 < 𝑏)
54 vex 3442 . . . . . . 7 𝑑 ∈ V
5549, 54brcnv 5829 . . . . . 6 (𝑏 < 𝑑𝑑 < 𝑏)
5655rexbii 3081 . . . . 5 (∃𝑑𝐴 𝑏 < 𝑑 ↔ ∃𝑑𝐴 𝑑 < 𝑏)
5753, 56imbi12i 350 . . . 4 ((𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5857ralbii 3080 . . 3 (∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5952, 58anbi12i 628 . 2 ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
6047, 59bitr4di 289 1 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  wrex 3058  wss 3899   class class class wbr 5095  ccnv 5620  cfv 6489  Basecbs 17130  lecple 17178  ltcplt 18224  Tosetctos 18330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-proset 18210  df-poset 18229  df-plt 18244  df-toset 18331
This theorem is referenced by:  tosglb  32967  xrsclat  33003
  Copyright terms: Public domain W3C validator