Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglblem Structured version   Visualization version   GIF version

Theorem tosglblem 32959
Description: Lemma for tosglb 32960 and xrsclat 33008. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
tosglb.e = (le‘𝐾)
Assertion
Ref Expression
tosglblem ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑, <   𝐴,𝑎,𝑏,𝑐,𝑑   𝐵,𝑎,𝑏,𝑐,𝑑   𝐾,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝐾(𝑑)   (𝑎,𝑏,𝑐,𝑑)

Proof of Theorem tosglblem
StepHypRef Expression
1 tosglb.1 . . . . . . 7 (𝜑𝐾 ∈ Toset)
21ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝐾 ∈ Toset)
3 tosglb.2 . . . . . . . 8 (𝜑𝐴𝐵)
43adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐴𝐵)
54sselda 3963 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
6 simplr 768 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑎𝐵)
7 tosglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 tosglb.e . . . . . . 7 = (le‘𝐾)
9 tosglb.l . . . . . . 7 < = (lt‘𝐾)
107, 8, 9tltnle 18437 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑎𝐵) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
112, 5, 6, 10syl3anc 1373 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
1211con2bid 354 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑎 𝑏 ↔ ¬ 𝑏 < 𝑎))
1312ralbidva 3162 . . 3 ((𝜑𝑎𝐵) → (∀𝑏𝐴 𝑎 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎))
143ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝐴𝐵)
15 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐴)
1614, 15sseldd 3964 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
177, 8, 9tltnle 18437 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
181, 17syl3an1 1163 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
19183com23 1126 . . . . . . . . . . . . 13 ((𝜑𝑐𝐵𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
20193expa 1118 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
2120con2bid 354 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2216, 21syldan 591 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2322ralbidva 3162 . . . . . . . . 9 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑐))
24 breq1 5127 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝑏 < 𝑐𝑑 < 𝑐))
2524notbid 318 . . . . . . . . . . 11 (𝑏 = 𝑑 → (¬ 𝑏 < 𝑐 ↔ ¬ 𝑑 < 𝑐))
2625cbvralvw 3224 . . . . . . . . . 10 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ∀𝑑𝐴 ¬ 𝑑 < 𝑐)
27 ralnex 3063 . . . . . . . . . 10 (∀𝑑𝐴 ¬ 𝑑 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2826, 27bitri 275 . . . . . . . . 9 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2923, 28bitrdi 287 . . . . . . . 8 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
3029adantlr 715 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
311ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐾 ∈ Toset)
32 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
33 simpr 484 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
347, 8, 9tltnle 18437 . . . . . . . . 9 ((𝐾 ∈ Toset ∧ 𝑎𝐵𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3531, 32, 33, 34syl3anc 1373 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3635con2bid 354 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑐 𝑎 ↔ ¬ 𝑎 < 𝑐))
3730, 36imbi12d 344 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐)))
38 con34b 316 . . . . . 6 ((𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐))
3937, 38bitr4di 289 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4039ralbidva 3162 . . . 4 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
41 breq2 5128 . . . . . 6 (𝑏 = 𝑐 → (𝑎 < 𝑏𝑎 < 𝑐))
42 breq2 5128 . . . . . . 7 (𝑏 = 𝑐 → (𝑑 < 𝑏𝑑 < 𝑐))
4342rexbidv 3165 . . . . . 6 (𝑏 = 𝑐 → (∃𝑑𝐴 𝑑 < 𝑏 ↔ ∃𝑑𝐴 𝑑 < 𝑐))
4441, 43imbi12d 344 . . . . 5 (𝑏 = 𝑐 → ((𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4544cbvralvw 3224 . . . 4 (∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐))
4640, 45bitr4di 289 . . 3 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
4713, 46anbi12d 632 . 2 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))))
48 vex 3468 . . . . . 6 𝑎 ∈ V
49 vex 3468 . . . . . 6 𝑏 ∈ V
5048, 49brcnv 5867 . . . . 5 (𝑎 < 𝑏𝑏 < 𝑎)
5150notbii 320 . . . 4 𝑎 < 𝑏 ↔ ¬ 𝑏 < 𝑎)
5251ralbii 3083 . . 3 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎)
5349, 48brcnv 5867 . . . . 5 (𝑏 < 𝑎𝑎 < 𝑏)
54 vex 3468 . . . . . . 7 𝑑 ∈ V
5549, 54brcnv 5867 . . . . . 6 (𝑏 < 𝑑𝑑 < 𝑏)
5655rexbii 3084 . . . . 5 (∃𝑑𝐴 𝑏 < 𝑑 ↔ ∃𝑑𝐴 𝑑 < 𝑏)
5753, 56imbi12i 350 . . . 4 ((𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5857ralbii 3083 . . 3 (∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5952, 58anbi12i 628 . 2 ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
6047, 59bitr4di 289 1 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  ccnv 5658  cfv 6536  Basecbs 17233  lecple 17283  ltcplt 18325  Tosetctos 18431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-proset 18311  df-poset 18330  df-plt 18345  df-toset 18432
This theorem is referenced by:  tosglb  32960  xrsclat  33008
  Copyright terms: Public domain W3C validator