Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tosglblem Structured version   Visualization version   GIF version

Theorem tosglblem 32903
Description: Lemma for tosglb 32904 and xrsclat 32952. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.)
Hypotheses
Ref Expression
tosglb.b 𝐵 = (Base‘𝐾)
tosglb.l < = (lt‘𝐾)
tosglb.1 (𝜑𝐾 ∈ Toset)
tosglb.2 (𝜑𝐴𝐵)
tosglb.e = (le‘𝐾)
Assertion
Ref Expression
tosglblem ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑, <   𝐴,𝑎,𝑏,𝑐,𝑑   𝐵,𝑎,𝑏,𝑐,𝑑   𝐾,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝐾(𝑑)   (𝑎,𝑏,𝑐,𝑑)

Proof of Theorem tosglblem
StepHypRef Expression
1 tosglb.1 . . . . . . 7 (𝜑𝐾 ∈ Toset)
21ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝐾 ∈ Toset)
3 tosglb.2 . . . . . . . 8 (𝜑𝐴𝐵)
43adantr 480 . . . . . . 7 ((𝜑𝑎𝐵) → 𝐴𝐵)
54sselda 3963 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
6 simplr 768 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑎𝐵)
7 tosglb.b . . . . . . 7 𝐵 = (Base‘𝐾)
8 tosglb.e . . . . . . 7 = (le‘𝐾)
9 tosglb.l . . . . . . 7 < = (lt‘𝐾)
107, 8, 9tltnle 18436 . . . . . 6 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑎𝐵) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
112, 5, 6, 10syl3anc 1372 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑏 < 𝑎 ↔ ¬ 𝑎 𝑏))
1211con2bid 354 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑎 𝑏 ↔ ¬ 𝑏 < 𝑎))
1312ralbidva 3163 . . 3 ((𝜑𝑎𝐵) → (∀𝑏𝐴 𝑎 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎))
143ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝐴𝐵)
15 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐴)
1614, 15sseldd 3964 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
177, 8, 9tltnle 18436 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Toset ∧ 𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
181, 17syl3an1 1163 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵𝑐𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
19183com23 1126 . . . . . . . . . . . . 13 ((𝜑𝑐𝐵𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
20193expa 1118 . . . . . . . . . . . 12 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑏 < 𝑐 ↔ ¬ 𝑐 𝑏))
2120con2bid 354 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2216, 21syldan 591 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → (𝑐 𝑏 ↔ ¬ 𝑏 < 𝑐))
2322ralbidva 3163 . . . . . . . . 9 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑐))
24 breq1 5126 . . . . . . . . . . . 12 (𝑏 = 𝑑 → (𝑏 < 𝑐𝑑 < 𝑐))
2524notbid 318 . . . . . . . . . . 11 (𝑏 = 𝑑 → (¬ 𝑏 < 𝑐 ↔ ¬ 𝑑 < 𝑐))
2625cbvralvw 3223 . . . . . . . . . 10 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ∀𝑑𝐴 ¬ 𝑑 < 𝑐)
27 ralnex 3061 . . . . . . . . . 10 (∀𝑑𝐴 ¬ 𝑑 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2826, 27bitri 275 . . . . . . . . 9 (∀𝑏𝐴 ¬ 𝑏 < 𝑐 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐)
2923, 28bitrdi 287 . . . . . . . 8 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
3029adantlr 715 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (∀𝑏𝐴 𝑐 𝑏 ↔ ¬ ∃𝑑𝐴 𝑑 < 𝑐))
311ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐾 ∈ Toset)
32 simplr 768 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
33 simpr 484 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
347, 8, 9tltnle 18436 . . . . . . . . 9 ((𝐾 ∈ Toset ∧ 𝑎𝐵𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3531, 32, 33, 34syl3anc 1372 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎 < 𝑐 ↔ ¬ 𝑐 𝑎))
3635con2bid 354 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑐 𝑎 ↔ ¬ 𝑎 < 𝑐))
3730, 36imbi12d 344 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐)))
38 con34b 316 . . . . . 6 ((𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐) ↔ (¬ ∃𝑑𝐴 𝑑 < 𝑐 → ¬ 𝑎 < 𝑐))
3937, 38bitr4di 289 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4039ralbidva 3163 . . . 4 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
41 breq2 5127 . . . . . 6 (𝑏 = 𝑐 → (𝑎 < 𝑏𝑎 < 𝑐))
42 breq2 5127 . . . . . . 7 (𝑏 = 𝑐 → (𝑑 < 𝑏𝑑 < 𝑐))
4342rexbidv 3166 . . . . . 6 (𝑏 = 𝑐 → (∃𝑑𝐴 𝑑 < 𝑏 ↔ ∃𝑑𝐴 𝑑 < 𝑐))
4441, 43imbi12d 344 . . . . 5 (𝑏 = 𝑐 → ((𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐)))
4544cbvralvw 3223 . . . 4 (∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏) ↔ ∀𝑐𝐵 (𝑎 < 𝑐 → ∃𝑑𝐴 𝑑 < 𝑐))
4640, 45bitr4di 289 . . 3 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
4713, 46anbi12d 632 . 2 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))))
48 vex 3467 . . . . . 6 𝑎 ∈ V
49 vex 3467 . . . . . 6 𝑏 ∈ V
5048, 49brcnv 5873 . . . . 5 (𝑎 < 𝑏𝑏 < 𝑎)
5150notbii 320 . . . 4 𝑎 < 𝑏 ↔ ¬ 𝑏 < 𝑎)
5251ralbii 3081 . . 3 (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ↔ ∀𝑏𝐴 ¬ 𝑏 < 𝑎)
5349, 48brcnv 5873 . . . . 5 (𝑏 < 𝑎𝑎 < 𝑏)
54 vex 3467 . . . . . . 7 𝑑 ∈ V
5549, 54brcnv 5873 . . . . . 6 (𝑏 < 𝑑𝑑 < 𝑏)
5655rexbii 3082 . . . . 5 (∃𝑑𝐴 𝑏 < 𝑑 ↔ ∃𝑑𝐴 𝑑 < 𝑏)
5753, 56imbi12i 350 . . . 4 ((𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5857ralbii 3081 . . 3 (∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏))
5952, 58anbi12i 628 . 2 ((∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑)) ↔ (∀𝑏𝐴 ¬ 𝑏 < 𝑎 ∧ ∀𝑏𝐵 (𝑎 < 𝑏 → ∃𝑑𝐴 𝑑 < 𝑏)))
6047, 59bitr4di 289 1 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑎 𝑏 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑐 𝑏𝑐 𝑎)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931   class class class wbr 5123  ccnv 5664  cfv 6541  Basecbs 17229  lecple 17280  ltcplt 18324  Tosetctos 18430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-proset 18310  df-poset 18329  df-plt 18344  df-toset 18431
This theorem is referenced by:  tosglb  32904  xrsclat  32952
  Copyright terms: Public domain W3C validator