Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslublem Structured version   Visualization version   GIF version

Theorem toslublem 32905
Description: Lemma for toslub 32906 and xrsclat 32956. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.)
Hypotheses
Ref Expression
toslub.b 𝐵 = (Base‘𝐾)
toslub.l < = (lt‘𝐾)
toslub.1 (𝜑𝐾 ∈ Toset)
toslub.2 (𝜑𝐴𝐵)
toslub.e = (le‘𝐾)
Assertion
Ref Expression
toslublem ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏 𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑, <   𝐴,𝑎,𝑏,𝑐,𝑑   𝐵,𝑎,𝑏,𝑐,𝑑   𝐾,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝐾(𝑑)   (𝑎,𝑏,𝑐,𝑑)

Proof of Theorem toslublem
StepHypRef Expression
1 toslub.1 . . . . . 6 (𝜑𝐾 ∈ Toset)
21ad2antrr 726 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝐾 ∈ Toset)
3 simplr 768 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑎𝐵)
4 toslub.2 . . . . . . 7 (𝜑𝐴𝐵)
54adantr 480 . . . . . 6 ((𝜑𝑎𝐵) → 𝐴𝐵)
65sselda 3949 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
7 toslub.b . . . . . 6 𝐵 = (Base‘𝐾)
8 toslub.e . . . . . 6 = (le‘𝐾)
9 toslub.l . . . . . 6 < = (lt‘𝐾)
107, 8, 9tltnle 18388 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑎𝐵𝑏𝐵) → (𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎))
112, 3, 6, 10syl3anc 1373 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎))
1211con2bid 354 . . 3 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑏 𝑎 ↔ ¬ 𝑎 < 𝑏))
1312ralbidva 3155 . 2 ((𝜑𝑎𝐵) → (∀𝑏𝐴 𝑏 𝑎 ↔ ∀𝑏𝐴 ¬ 𝑎 < 𝑏))
144ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝐴𝐵)
15 simpr 484 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐴)
1614, 15sseldd 3950 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
177, 8, 9tltnle 18388 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑐𝐵𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
181, 17syl3an1 1163 . . . . . . . . . . . 12 ((𝜑𝑐𝐵𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
19183expa 1118 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
2019con2bid 354 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏))
2116, 20syldan 591 . . . . . . . . 9 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → (𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏))
2221ralbidva 3155 . . . . . . . 8 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ∀𝑏𝐴 ¬ 𝑐 < 𝑏))
23 breq2 5114 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑐 < 𝑏𝑐 < 𝑑))
2423notbid 318 . . . . . . . . . 10 (𝑏 = 𝑑 → (¬ 𝑐 < 𝑏 ↔ ¬ 𝑐 < 𝑑))
2524cbvralvw 3216 . . . . . . . . 9 (∀𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ∀𝑑𝐴 ¬ 𝑐 < 𝑑)
26 ralnex 3056 . . . . . . . . 9 (∀𝑑𝐴 ¬ 𝑐 < 𝑑 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑)
2725, 26bitri 275 . . . . . . . 8 (∀𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑)
2822, 27bitrdi 287 . . . . . . 7 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑))
2928adantlr 715 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑))
301ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐾 ∈ Toset)
31 simpr 484 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
32 simplr 768 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
337, 8, 9tltnle 18388 . . . . . . . 8 ((𝐾 ∈ Toset ∧ 𝑐𝐵𝑎𝐵) → (𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐))
3430, 31, 32, 33syl3anc 1373 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐))
3534con2bid 354 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎 𝑐 ↔ ¬ 𝑐 < 𝑎))
3629, 35imbi12d 344 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ (¬ ∃𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎)))
37 con34b 316 . . . . 5 ((𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑) ↔ (¬ ∃𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎))
3836, 37bitr4di 289 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
3938ralbidva 3155 . . 3 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ ∀𝑐𝐵 (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
40 breq1 5113 . . . . 5 (𝑏 = 𝑐 → (𝑏 < 𝑎𝑐 < 𝑎))
41 breq1 5113 . . . . . 6 (𝑏 = 𝑐 → (𝑏 < 𝑑𝑐 < 𝑑))
4241rexbidv 3158 . . . . 5 (𝑏 = 𝑐 → (∃𝑑𝐴 𝑏 < 𝑑 ↔ ∃𝑑𝐴 𝑐 < 𝑑))
4340, 42imbi12d 344 . . . 4 (𝑏 = 𝑐 → ((𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
4443cbvralvw 3216 . . 3 (∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ ∀𝑐𝐵 (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑))
4539, 44bitr4di 289 . 2 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑)))
4613, 45anbi12d 632 1 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏 𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  ltcplt 18276  Tosetctos 18382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-proset 18262  df-poset 18281  df-plt 18296  df-toset 18383
This theorem is referenced by:  toslub  32906  xrsclat  32956
  Copyright terms: Public domain W3C validator