Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslublem Structured version   Visualization version   GIF version

Theorem toslublem 32947
Description: Lemma for toslub 32948 and xrsclat 32996. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.)
Hypotheses
Ref Expression
toslub.b 𝐵 = (Base‘𝐾)
toslub.l < = (lt‘𝐾)
toslub.1 (𝜑𝐾 ∈ Toset)
toslub.2 (𝜑𝐴𝐵)
toslub.e = (le‘𝐾)
Assertion
Ref Expression
toslublem ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏 𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑, <   𝐴,𝑎,𝑏,𝑐,𝑑   𝐵,𝑎,𝑏,𝑐,𝑑   𝐾,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝐾(𝑑)   (𝑎,𝑏,𝑐,𝑑)

Proof of Theorem toslublem
StepHypRef Expression
1 toslub.1 . . . . . 6 (𝜑𝐾 ∈ Toset)
21ad2antrr 726 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝐾 ∈ Toset)
3 simplr 769 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑎𝐵)
4 toslub.2 . . . . . . 7 (𝜑𝐴𝐵)
54adantr 480 . . . . . 6 ((𝜑𝑎𝐵) → 𝐴𝐵)
65sselda 3995 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
7 toslub.b . . . . . 6 𝐵 = (Base‘𝐾)
8 toslub.e . . . . . 6 = (le‘𝐾)
9 toslub.l . . . . . 6 < = (lt‘𝐾)
107, 8, 9tltnle 18480 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑎𝐵𝑏𝐵) → (𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎))
112, 3, 6, 10syl3anc 1370 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎))
1211con2bid 354 . . 3 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑏 𝑎 ↔ ¬ 𝑎 < 𝑏))
1312ralbidva 3174 . 2 ((𝜑𝑎𝐵) → (∀𝑏𝐴 𝑏 𝑎 ↔ ∀𝑏𝐴 ¬ 𝑎 < 𝑏))
144ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝐴𝐵)
15 simpr 484 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐴)
1614, 15sseldd 3996 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
177, 8, 9tltnle 18480 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑐𝐵𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
181, 17syl3an1 1162 . . . . . . . . . . . 12 ((𝜑𝑐𝐵𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
19183expa 1117 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
2019con2bid 354 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏))
2116, 20syldan 591 . . . . . . . . 9 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → (𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏))
2221ralbidva 3174 . . . . . . . 8 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ∀𝑏𝐴 ¬ 𝑐 < 𝑏))
23 breq2 5152 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑐 < 𝑏𝑐 < 𝑑))
2423notbid 318 . . . . . . . . . 10 (𝑏 = 𝑑 → (¬ 𝑐 < 𝑏 ↔ ¬ 𝑐 < 𝑑))
2524cbvralvw 3235 . . . . . . . . 9 (∀𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ∀𝑑𝐴 ¬ 𝑐 < 𝑑)
26 ralnex 3070 . . . . . . . . 9 (∀𝑑𝐴 ¬ 𝑐 < 𝑑 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑)
2725, 26bitri 275 . . . . . . . 8 (∀𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑)
2822, 27bitrdi 287 . . . . . . 7 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑))
2928adantlr 715 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑))
301ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐾 ∈ Toset)
31 simpr 484 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
32 simplr 769 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
337, 8, 9tltnle 18480 . . . . . . . 8 ((𝐾 ∈ Toset ∧ 𝑐𝐵𝑎𝐵) → (𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐))
3430, 31, 32, 33syl3anc 1370 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐))
3534con2bid 354 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎 𝑐 ↔ ¬ 𝑐 < 𝑎))
3629, 35imbi12d 344 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ (¬ ∃𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎)))
37 con34b 316 . . . . 5 ((𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑) ↔ (¬ ∃𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎))
3836, 37bitr4di 289 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
3938ralbidva 3174 . . 3 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ ∀𝑐𝐵 (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
40 breq1 5151 . . . . 5 (𝑏 = 𝑐 → (𝑏 < 𝑎𝑐 < 𝑎))
41 breq1 5151 . . . . . 6 (𝑏 = 𝑐 → (𝑏 < 𝑑𝑐 < 𝑑))
4241rexbidv 3177 . . . . 5 (𝑏 = 𝑐 → (∃𝑑𝐴 𝑏 < 𝑑 ↔ ∃𝑑𝐴 𝑐 < 𝑑))
4340, 42imbi12d 344 . . . 4 (𝑏 = 𝑐 → ((𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
4443cbvralvw 3235 . . 3 (∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ ∀𝑐𝐵 (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑))
4539, 44bitr4di 289 . 2 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑)))
4613, 45anbi12d 632 1 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏 𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  cfv 6563  Basecbs 17245  lecple 17305  ltcplt 18366  Tosetctos 18474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-proset 18352  df-poset 18371  df-plt 18388  df-toset 18475
This theorem is referenced by:  toslub  32948  xrsclat  32996
  Copyright terms: Public domain W3C validator