Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toslublem Structured version   Visualization version   GIF version

Theorem toslublem 32898
Description: Lemma for toslub 32899 and xrsclat 32949. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.)
Hypotheses
Ref Expression
toslub.b 𝐵 = (Base‘𝐾)
toslub.l < = (lt‘𝐾)
toslub.1 (𝜑𝐾 ∈ Toset)
toslub.2 (𝜑𝐴𝐵)
toslub.e = (le‘𝐾)
Assertion
Ref Expression
toslublem ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏 𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑, <   𝐴,𝑎,𝑏,𝑐,𝑑   𝐵,𝑎,𝑏,𝑐,𝑑   𝐾,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑑)   𝐾(𝑑)   (𝑎,𝑏,𝑐,𝑑)

Proof of Theorem toslublem
StepHypRef Expression
1 toslub.1 . . . . . 6 (𝜑𝐾 ∈ Toset)
21ad2antrr 726 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝐾 ∈ Toset)
3 simplr 768 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑎𝐵)
4 toslub.2 . . . . . . 7 (𝜑𝐴𝐵)
54adantr 480 . . . . . 6 ((𝜑𝑎𝐵) → 𝐴𝐵)
65sselda 3946 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
7 toslub.b . . . . . 6 𝐵 = (Base‘𝐾)
8 toslub.e . . . . . 6 = (le‘𝐾)
9 toslub.l . . . . . 6 < = (lt‘𝐾)
107, 8, 9tltnle 18381 . . . . 5 ((𝐾 ∈ Toset ∧ 𝑎𝐵𝑏𝐵) → (𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎))
112, 3, 6, 10syl3anc 1373 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑎 < 𝑏 ↔ ¬ 𝑏 𝑎))
1211con2bid 354 . . 3 (((𝜑𝑎𝐵) ∧ 𝑏𝐴) → (𝑏 𝑎 ↔ ¬ 𝑎 < 𝑏))
1312ralbidva 3154 . 2 ((𝜑𝑎𝐵) → (∀𝑏𝐴 𝑏 𝑎 ↔ ∀𝑏𝐴 ¬ 𝑎 < 𝑏))
144ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝐴𝐵)
15 simpr 484 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐴)
1614, 15sseldd 3947 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → 𝑏𝐵)
177, 8, 9tltnle 18381 . . . . . . . . . . . . 13 ((𝐾 ∈ Toset ∧ 𝑐𝐵𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
181, 17syl3an1 1163 . . . . . . . . . . . 12 ((𝜑𝑐𝐵𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
19183expa 1118 . . . . . . . . . . 11 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑐 < 𝑏 ↔ ¬ 𝑏 𝑐))
2019con2bid 354 . . . . . . . . . 10 (((𝜑𝑐𝐵) ∧ 𝑏𝐵) → (𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏))
2116, 20syldan 591 . . . . . . . . 9 (((𝜑𝑐𝐵) ∧ 𝑏𝐴) → (𝑏 𝑐 ↔ ¬ 𝑐 < 𝑏))
2221ralbidva 3154 . . . . . . . 8 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ∀𝑏𝐴 ¬ 𝑐 < 𝑏))
23 breq2 5111 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑐 < 𝑏𝑐 < 𝑑))
2423notbid 318 . . . . . . . . . 10 (𝑏 = 𝑑 → (¬ 𝑐 < 𝑏 ↔ ¬ 𝑐 < 𝑑))
2524cbvralvw 3215 . . . . . . . . 9 (∀𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ∀𝑑𝐴 ¬ 𝑐 < 𝑑)
26 ralnex 3055 . . . . . . . . 9 (∀𝑑𝐴 ¬ 𝑐 < 𝑑 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑)
2725, 26bitri 275 . . . . . . . 8 (∀𝑏𝐴 ¬ 𝑐 < 𝑏 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑)
2822, 27bitrdi 287 . . . . . . 7 ((𝜑𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑))
2928adantlr 715 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (∀𝑏𝐴 𝑏 𝑐 ↔ ¬ ∃𝑑𝐴 𝑐 < 𝑑))
301ad2antrr 726 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝐾 ∈ Toset)
31 simpr 484 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑐𝐵)
32 simplr 768 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → 𝑎𝐵)
337, 8, 9tltnle 18381 . . . . . . . 8 ((𝐾 ∈ Toset ∧ 𝑐𝐵𝑎𝐵) → (𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐))
3430, 31, 32, 33syl3anc 1373 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑐 < 𝑎 ↔ ¬ 𝑎 𝑐))
3534con2bid 354 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → (𝑎 𝑐 ↔ ¬ 𝑐 < 𝑎))
3629, 35imbi12d 344 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ (¬ ∃𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎)))
37 con34b 316 . . . . 5 ((𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑) ↔ (¬ ∃𝑑𝐴 𝑐 < 𝑑 → ¬ 𝑐 < 𝑎))
3836, 37bitr4di 289 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑐𝐵) → ((∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
3938ralbidva 3154 . . 3 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ ∀𝑐𝐵 (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
40 breq1 5110 . . . . 5 (𝑏 = 𝑐 → (𝑏 < 𝑎𝑐 < 𝑎))
41 breq1 5110 . . . . . 6 (𝑏 = 𝑐 → (𝑏 < 𝑑𝑐 < 𝑑))
4241rexbidv 3157 . . . . 5 (𝑏 = 𝑐 → (∃𝑑𝐴 𝑏 < 𝑑 ↔ ∃𝑑𝐴 𝑐 < 𝑑))
4340, 42imbi12d 344 . . . 4 (𝑏 = 𝑐 → ((𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑)))
4443cbvralvw 3215 . . 3 (∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑) ↔ ∀𝑐𝐵 (𝑐 < 𝑎 → ∃𝑑𝐴 𝑐 < 𝑑))
4539, 44bitr4di 289 . 2 ((𝜑𝑎𝐵) → (∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐) ↔ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑)))
4613, 45anbi12d 632 1 ((𝜑𝑎𝐵) → ((∀𝑏𝐴 𝑏 𝑎 ∧ ∀𝑐𝐵 (∀𝑏𝐴 𝑏 𝑐𝑎 𝑐)) ↔ (∀𝑏𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏𝐵 (𝑏 < 𝑎 → ∃𝑑𝐴 𝑏 < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  ltcplt 18269  Tosetctos 18375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-proset 18255  df-poset 18274  df-plt 18289  df-toset 18376
This theorem is referenced by:  toslub  32899  xrsclat  32949
  Copyright terms: Public domain W3C validator