![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > connsubclo | Structured version Visualization version GIF version |
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
connsubclo.1 | ⊢ 𝑋 = ∪ 𝐽 |
connsubclo.3 | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
connsubclo.4 | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) |
connsubclo.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐽) |
connsubclo.6 | ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
connsubclo.7 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
connsubclo | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
2 | connsubclo.4 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) | |
3 | connsubclo.7 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
4 | cldrcl 22400 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | connsubclo.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | topopn 22278 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
9 | connsubclo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
10 | 8, 9 | ssexd 5285 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
11 | connsubclo.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐽) | |
12 | elrestr 17318 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
13 | 5, 10, 11, 12 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
14 | connsubclo.6 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) | |
15 | eqid 2733 | . . . . . 6 ⊢ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴) | |
16 | ineq1 4169 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
17 | 16 | rspceeqv 3599 | . . . . . 6 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
18 | 3, 15, 17 | sylancl 587 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
19 | 6 | restcld 22546 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
20 | 5, 9, 19 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
21 | 18, 20 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
22 | 1, 2, 13, 14, 21 | connclo 22789 | . . 3 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = ∪ (𝐽 ↾t 𝐴)) |
23 | 6 | restuni 22536 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
24 | 5, 9, 23 | syl2anc 585 | . . 3 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
25 | 22, 24 | eqtr4d 2776 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
26 | sseqin2 4179 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
27 | 25, 26 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∃wrex 3070 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ∅c0 4286 ∪ cuni 4869 ‘cfv 6500 (class class class)co 7361 ↾t crest 17310 Topctop 22265 Clsdccld 22390 Conncconn 22785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-en 8890 df-fin 8893 df-fi 9355 df-rest 17312 df-topgen 17333 df-top 22266 df-topon 22283 df-bases 22319 df-cld 22393 df-conn 22786 |
This theorem is referenced by: conncn 22800 conncompclo 22809 |
Copyright terms: Public domain | W3C validator |