MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsubclo Structured version   Visualization version   GIF version

Theorem connsubclo 23432
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
connsubclo.1 𝑋 = 𝐽
connsubclo.3 (𝜑𝐴𝑋)
connsubclo.4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
connsubclo.5 (𝜑𝐵𝐽)
connsubclo.6 (𝜑 → (𝐵𝐴) ≠ ∅)
connsubclo.7 (𝜑𝐵 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
connsubclo (𝜑𝐴𝐵)

Proof of Theorem connsubclo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (𝐽t 𝐴) = (𝐽t 𝐴)
2 connsubclo.4 . . . 4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
3 connsubclo.7 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
4 cldrcl 23034 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
6 connsubclo.1 . . . . . . . 8 𝑋 = 𝐽
76topopn 22912 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
85, 7syl 17 . . . . . 6 (𝜑𝑋𝐽)
9 connsubclo.3 . . . . . 6 (𝜑𝐴𝑋)
108, 9ssexd 5324 . . . . 5 (𝜑𝐴 ∈ V)
11 connsubclo.5 . . . . 5 (𝜑𝐵𝐽)
12 elrestr 17473 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
135, 10, 11, 12syl3anc 1373 . . . 4 (𝜑 → (𝐵𝐴) ∈ (𝐽t 𝐴))
14 connsubclo.6 . . . 4 (𝜑 → (𝐵𝐴) ≠ ∅)
15 eqid 2737 . . . . . 6 (𝐵𝐴) = (𝐵𝐴)
16 ineq1 4213 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
1716rspceeqv 3645 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵𝐴) = (𝐵𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
183, 15, 17sylancl 586 . . . . 5 (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
196restcld 23180 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
205, 9, 19syl2anc 584 . . . . 5 (𝜑 → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
2118, 20mpbird 257 . . . 4 (𝜑 → (𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)))
221, 2, 13, 14, 21connclo 23423 . . 3 (𝜑 → (𝐵𝐴) = (𝐽t 𝐴))
236restuni 23170 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
245, 9, 23syl2anc 584 . . 3 (𝜑𝐴 = (𝐽t 𝐴))
2522, 24eqtr4d 2780 . 2 (𝜑 → (𝐵𝐴) = 𝐴)
26 sseqin2 4223 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2725, 26sylibr 234 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cin 3950  wss 3951  c0 4333   cuni 4907  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  Clsdccld 23024  Conncconn 23419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-conn 23420
This theorem is referenced by:  conncn  23434  conncompclo  23443
  Copyright terms: Public domain W3C validator