Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > connsubclo | Structured version Visualization version GIF version |
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
connsubclo.1 | ⊢ 𝑋 = ∪ 𝐽 |
connsubclo.3 | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
connsubclo.4 | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) |
connsubclo.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐽) |
connsubclo.6 | ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
connsubclo.7 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
connsubclo | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
2 | connsubclo.4 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) | |
3 | connsubclo.7 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
4 | cldrcl 22177 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | connsubclo.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | topopn 22055 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
9 | connsubclo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
10 | 8, 9 | ssexd 5248 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
11 | connsubclo.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐽) | |
12 | elrestr 17139 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
13 | 5, 10, 11, 12 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
14 | connsubclo.6 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) | |
15 | eqid 2738 | . . . . . 6 ⊢ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴) | |
16 | ineq1 4139 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
17 | 16 | rspceeqv 3575 | . . . . . 6 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
18 | 3, 15, 17 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
19 | 6 | restcld 22323 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
20 | 5, 9, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
21 | 18, 20 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
22 | 1, 2, 13, 14, 21 | connclo 22566 | . . 3 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = ∪ (𝐽 ↾t 𝐴)) |
23 | 6 | restuni 22313 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
24 | 5, 9, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
25 | 22, 24 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
26 | sseqin2 4149 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
27 | 25, 26 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 Clsdccld 22167 Conncconn 22562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 df-conn 22563 |
This theorem is referenced by: conncn 22577 conncompclo 22586 |
Copyright terms: Public domain | W3C validator |