| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connsubclo | Structured version Visualization version GIF version | ||
| Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| connsubclo.1 | ⊢ 𝑋 = ∪ 𝐽 |
| connsubclo.3 | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| connsubclo.4 | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) |
| connsubclo.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐽) |
| connsubclo.6 | ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) |
| connsubclo.7 | ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) |
| Ref | Expression |
|---|---|
| connsubclo | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t 𝐴) | |
| 2 | connsubclo.4 | . . . 4 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) | |
| 3 | connsubclo.7 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (Clsd‘𝐽)) | |
| 4 | cldrcl 22969 | . . . . . 6 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 6 | connsubclo.1 | . . . . . . . 8 ⊢ 𝑋 = ∪ 𝐽 | |
| 7 | 6 | topopn 22849 | . . . . . . 7 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 8 | 5, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 9 | connsubclo.3 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 10 | 8, 9 | ssexd 5299 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 11 | connsubclo.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐽) | |
| 12 | elrestr 17447 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵 ∈ 𝐽) → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) | |
| 13 | 5, 10, 11, 12 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (𝐽 ↾t 𝐴)) |
| 14 | connsubclo.6 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ≠ ∅) | |
| 15 | eqid 2736 | . . . . . 6 ⊢ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴) | |
| 16 | ineq1 4193 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑥 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
| 17 | 16 | rspceeqv 3629 | . . . . . 6 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵 ∩ 𝐴) = (𝐵 ∩ 𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
| 18 | 3, 15, 17 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴)) |
| 19 | 6 | restcld 23115 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
| 20 | 5, 9, 19 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵 ∩ 𝐴) = (𝑥 ∩ 𝐴))) |
| 21 | 18, 20 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
| 22 | 1, 2, 13, 14, 21 | connclo 23358 | . . 3 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = ∪ (𝐽 ↾t 𝐴)) |
| 23 | 6 | restuni 23105 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 24 | 5, 9, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| 25 | 22, 24 | eqtr4d 2774 | . 2 ⊢ (𝜑 → (𝐵 ∩ 𝐴) = 𝐴) |
| 26 | sseqin2 4203 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
| 27 | 25, 26 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ‘cfv 6536 (class class class)co 7410 ↾t crest 17439 Topctop 22836 Clsdccld 22959 Conncconn 23354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-en 8965 df-fin 8968 df-fi 9428 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-conn 23355 |
| This theorem is referenced by: conncn 23369 conncompclo 23378 |
| Copyright terms: Public domain | W3C validator |