MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsubclo Structured version   Visualization version   GIF version

Theorem connsubclo 22927
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
connsubclo.1 𝑋 = 𝐽
connsubclo.3 (𝜑𝐴𝑋)
connsubclo.4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
connsubclo.5 (𝜑𝐵𝐽)
connsubclo.6 (𝜑 → (𝐵𝐴) ≠ ∅)
connsubclo.7 (𝜑𝐵 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
connsubclo (𝜑𝐴𝐵)

Proof of Theorem connsubclo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (𝐽t 𝐴) = (𝐽t 𝐴)
2 connsubclo.4 . . . 4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
3 connsubclo.7 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
4 cldrcl 22529 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
6 connsubclo.1 . . . . . . . 8 𝑋 = 𝐽
76topopn 22407 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
85, 7syl 17 . . . . . 6 (𝜑𝑋𝐽)
9 connsubclo.3 . . . . . 6 (𝜑𝐴𝑋)
108, 9ssexd 5324 . . . . 5 (𝜑𝐴 ∈ V)
11 connsubclo.5 . . . . 5 (𝜑𝐵𝐽)
12 elrestr 17373 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
135, 10, 11, 12syl3anc 1371 . . . 4 (𝜑 → (𝐵𝐴) ∈ (𝐽t 𝐴))
14 connsubclo.6 . . . 4 (𝜑 → (𝐵𝐴) ≠ ∅)
15 eqid 2732 . . . . . 6 (𝐵𝐴) = (𝐵𝐴)
16 ineq1 4205 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
1716rspceeqv 3633 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵𝐴) = (𝐵𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
183, 15, 17sylancl 586 . . . . 5 (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
196restcld 22675 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
205, 9, 19syl2anc 584 . . . . 5 (𝜑 → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
2118, 20mpbird 256 . . . 4 (𝜑 → (𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)))
221, 2, 13, 14, 21connclo 22918 . . 3 (𝜑 → (𝐵𝐴) = (𝐽t 𝐴))
236restuni 22665 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
245, 9, 23syl2anc 584 . . 3 (𝜑𝐴 = (𝐽t 𝐴))
2522, 24eqtr4d 2775 . 2 (𝜑 → (𝐵𝐴) = 𝐴)
26 sseqin2 4215 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2725, 26sylibr 233 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wne 2940  wrex 3070  Vcvv 3474  cin 3947  wss 3948  c0 4322   cuni 4908  cfv 6543  (class class class)co 7408  t crest 17365  Topctop 22394  Clsdccld 22519  Conncconn 22914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-en 8939  df-fin 8942  df-fi 9405  df-rest 17367  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cld 22522  df-conn 22915
This theorem is referenced by:  conncn  22929  conncompclo  22938
  Copyright terms: Public domain W3C validator