MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsubclo Structured version   Visualization version   GIF version

Theorem connsubclo 23318
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
connsubclo.1 𝑋 = 𝐽
connsubclo.3 (𝜑𝐴𝑋)
connsubclo.4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
connsubclo.5 (𝜑𝐵𝐽)
connsubclo.6 (𝜑 → (𝐵𝐴) ≠ ∅)
connsubclo.7 (𝜑𝐵 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
connsubclo (𝜑𝐴𝐵)

Proof of Theorem connsubclo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (𝐽t 𝐴) = (𝐽t 𝐴)
2 connsubclo.4 . . . 4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
3 connsubclo.7 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
4 cldrcl 22920 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
6 connsubclo.1 . . . . . . . 8 𝑋 = 𝐽
76topopn 22800 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
85, 7syl 17 . . . . . 6 (𝜑𝑋𝐽)
9 connsubclo.3 . . . . . 6 (𝜑𝐴𝑋)
108, 9ssexd 5282 . . . . 5 (𝜑𝐴 ∈ V)
11 connsubclo.5 . . . . 5 (𝜑𝐵𝐽)
12 elrestr 17398 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
135, 10, 11, 12syl3anc 1373 . . . 4 (𝜑 → (𝐵𝐴) ∈ (𝐽t 𝐴))
14 connsubclo.6 . . . 4 (𝜑 → (𝐵𝐴) ≠ ∅)
15 eqid 2730 . . . . . 6 (𝐵𝐴) = (𝐵𝐴)
16 ineq1 4179 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
1716rspceeqv 3614 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵𝐴) = (𝐵𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
183, 15, 17sylancl 586 . . . . 5 (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
196restcld 23066 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
205, 9, 19syl2anc 584 . . . . 5 (𝜑 → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
2118, 20mpbird 257 . . . 4 (𝜑 → (𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)))
221, 2, 13, 14, 21connclo 23309 . . 3 (𝜑 → (𝐵𝐴) = (𝐽t 𝐴))
236restuni 23056 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
245, 9, 23syl2anc 584 . . 3 (𝜑𝐴 = (𝐽t 𝐴))
2522, 24eqtr4d 2768 . 2 (𝜑 → (𝐵𝐴) = 𝐴)
26 sseqin2 4189 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2725, 26sylibr 234 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299   cuni 4874  cfv 6514  (class class class)co 7390  t crest 17390  Topctop 22787  Clsdccld 22910  Conncconn 23305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-en 8922  df-fin 8925  df-fi 9369  df-rest 17392  df-topgen 17413  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-conn 23306
This theorem is referenced by:  conncn  23320  conncompclo  23329
  Copyright terms: Public domain W3C validator