MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connsubclo Structured version   Visualization version   GIF version

Theorem connsubclo 22575
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
connsubclo.1 𝑋 = 𝐽
connsubclo.3 (𝜑𝐴𝑋)
connsubclo.4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
connsubclo.5 (𝜑𝐵𝐽)
connsubclo.6 (𝜑 → (𝐵𝐴) ≠ ∅)
connsubclo.7 (𝜑𝐵 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
connsubclo (𝜑𝐴𝐵)

Proof of Theorem connsubclo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (𝐽t 𝐴) = (𝐽t 𝐴)
2 connsubclo.4 . . . 4 (𝜑 → (𝐽t 𝐴) ∈ Conn)
3 connsubclo.7 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
4 cldrcl 22177 . . . . . 6 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
53, 4syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
6 connsubclo.1 . . . . . . . 8 𝑋 = 𝐽
76topopn 22055 . . . . . . 7 (𝐽 ∈ Top → 𝑋𝐽)
85, 7syl 17 . . . . . 6 (𝜑𝑋𝐽)
9 connsubclo.3 . . . . . 6 (𝜑𝐴𝑋)
108, 9ssexd 5248 . . . . 5 (𝜑𝐴 ∈ V)
11 connsubclo.5 . . . . 5 (𝜑𝐵𝐽)
12 elrestr 17139 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵𝐽) → (𝐵𝐴) ∈ (𝐽t 𝐴))
135, 10, 11, 12syl3anc 1370 . . . 4 (𝜑 → (𝐵𝐴) ∈ (𝐽t 𝐴))
14 connsubclo.6 . . . 4 (𝜑 → (𝐵𝐴) ≠ ∅)
15 eqid 2738 . . . . . 6 (𝐵𝐴) = (𝐵𝐴)
16 ineq1 4139 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
1716rspceeqv 3575 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝐵𝐴) = (𝐵𝐴)) → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
183, 15, 17sylancl 586 . . . . 5 (𝜑 → ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴))
196restcld 22323 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
205, 9, 19syl2anc 584 . . . . 5 (𝜑 → ((𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)(𝐵𝐴) = (𝑥𝐴)))
2118, 20mpbird 256 . . . 4 (𝜑 → (𝐵𝐴) ∈ (Clsd‘(𝐽t 𝐴)))
221, 2, 13, 14, 21connclo 22566 . . 3 (𝜑 → (𝐵𝐴) = (𝐽t 𝐴))
236restuni 22313 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
245, 9, 23syl2anc 584 . . 3 (𝜑𝐴 = (𝐽t 𝐴))
2522, 24eqtr4d 2781 . 2 (𝜑 → (𝐵𝐴) = 𝐴)
26 sseqin2 4149 . 2 (𝐴𝐵 ↔ (𝐵𝐴) = 𝐴)
2725, 26sylibr 233 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256   cuni 4839  cfv 6433  (class class class)co 7275  t crest 17131  Topctop 22042  Clsdccld 22167  Conncconn 22562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-en 8734  df-fin 8737  df-fi 9170  df-rest 17133  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-conn 22563
This theorem is referenced by:  conncn  22577  conncompclo  22586
  Copyright terms: Public domain W3C validator