MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconn Structured version   Visualization version   GIF version

Theorem cnconn 22027
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
cnconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnconn ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)

Proof of Theorem cnconn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop2 21846 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1132 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 df-ne 2988 . . . . . . 7 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
4 eqid 2798 . . . . . . . . . . . 12 𝐽 = 𝐽
5 simpl1 1188 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐽 ∈ Conn)
6 simpl3 1190 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹 ∈ (𝐽 Cn 𝐾))
7 simprl 770 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)))
87elin1d 4125 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝐾)
9 cnima 21870 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
106, 8, 9syl2anc 587 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ 𝐽)
11 elssuni 4830 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐾𝑥 𝐾)
128, 11syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 𝐾)
13 cnconn.2 . . . . . . . . . . . . . . . . . 18 𝑌 = 𝐾
1412, 13sseqtrrdi 3966 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝑌)
15 simpl2 1189 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹:𝑋onto𝑌)
16 forn 6568 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → ran 𝐹 = 𝑌)
1814, 17sseqtrrd 3956 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ ran 𝐹)
19 df-rn 5530 . . . . . . . . . . . . . . . 16 ran 𝐹 = dom 𝐹
2018, 19sseqtrdi 3965 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ dom 𝐹)
21 sseqin2 4142 . . . . . . . . . . . . . . 15 (𝑥 ⊆ dom 𝐹 ↔ (dom 𝐹𝑥) = 𝑥)
2220, 21sylib 221 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) = 𝑥)
23 simprr 772 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
2422, 23eqnetrd 3054 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) ≠ ∅)
25 imadisj 5915 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ ↔ (dom 𝐹𝑥) = ∅)
2625necon3bii 3039 . . . . . . . . . . . . 13 ((𝐹𝑥) ≠ ∅ ↔ (dom 𝐹𝑥) ≠ ∅)
2724, 26sylibr 237 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ≠ ∅)
287elin2d 4126 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Clsd‘𝐾))
29 cnclima 21873 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ (Clsd‘𝐾)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
306, 28, 29syl2anc 587 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
314, 5, 10, 27, 30connclo 22020 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝐽)
324, 13cnf 21851 . . . . . . . . . . . 12 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
33 fdm 6495 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → dom 𝐹 = 𝐽)
346, 32, 333syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝐽)
35 fof 6565 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
36 fdm 6495 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
3715, 35, 363syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝑋)
3831, 34, 373eqtr2d 2839 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝑋)
3938imaeq2d 5896 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = (𝐹𝑋))
40 foimacnv 6607 . . . . . . . . . 10 ((𝐹:𝑋onto𝑌𝑥𝑌) → (𝐹 “ (𝐹𝑥)) = 𝑥)
4115, 14, 40syl2anc 587 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
42 foima 6570 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
4315, 42syl 17 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑋) = 𝑌)
4439, 41, 433eqtr3d 2841 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 = 𝑌)
4544expr 460 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 ≠ ∅ → 𝑥 = 𝑌))
463, 45syl5bir 246 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (¬ 𝑥 = ∅ → 𝑥 = 𝑌))
4746orrd 860 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 = ∅ ∨ 𝑥 = 𝑌))
48 vex 3444 . . . . . 6 𝑥 ∈ V
4948elpr 4548 . . . . 5 (𝑥 ∈ {∅, 𝑌} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝑌))
5047, 49sylibr 237 . . . 4 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → 𝑥 ∈ {∅, 𝑌})
5150ex 416 . . 3 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) → 𝑥 ∈ {∅, 𝑌}))
5251ssrdv 3921 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌})
5313isconn2 22019 . 2 (𝐾 ∈ Conn ↔ (𝐾 ∈ Top ∧ (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌}))
542, 52, 53sylanbrc 586 1 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cin 3880  wss 3881  c0 4243  {cpr 4527   cuni 4800  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  Topctop 21498  Clsdccld 21621   Cn ccn 21829  Conncconn 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fo 6330  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-top 21499  df-topon 21516  df-cld 21624  df-cn 21832  df-conn 22017
This theorem is referenced by:  connima  22030  conncn  22031  qtopconn  22314  connhmph  22394  ivthALT  33796
  Copyright terms: Public domain W3C validator