MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconn Structured version   Visualization version   GIF version

Theorem cnconn 23316
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
cnconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnconn ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)

Proof of Theorem cnconn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop2 23135 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1135 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 df-ne 2927 . . . . . . 7 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
4 eqid 2730 . . . . . . . . . . . 12 𝐽 = 𝐽
5 simpl1 1192 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐽 ∈ Conn)
6 simpl3 1194 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹 ∈ (𝐽 Cn 𝐾))
7 simprl 770 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)))
87elin1d 4170 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝐾)
9 cnima 23159 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
106, 8, 9syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ 𝐽)
11 elssuni 4904 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐾𝑥 𝐾)
128, 11syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 𝐾)
13 cnconn.2 . . . . . . . . . . . . . . . . . 18 𝑌 = 𝐾
1412, 13sseqtrrdi 3991 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝑌)
15 simpl2 1193 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹:𝑋onto𝑌)
16 forn 6778 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → ran 𝐹 = 𝑌)
1814, 17sseqtrrd 3987 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ ran 𝐹)
19 df-rn 5652 . . . . . . . . . . . . . . . 16 ran 𝐹 = dom 𝐹
2018, 19sseqtrdi 3990 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ dom 𝐹)
21 sseqin2 4189 . . . . . . . . . . . . . . 15 (𝑥 ⊆ dom 𝐹 ↔ (dom 𝐹𝑥) = 𝑥)
2220, 21sylib 218 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) = 𝑥)
23 simprr 772 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
2422, 23eqnetrd 2993 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) ≠ ∅)
25 imadisj 6054 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ ↔ (dom 𝐹𝑥) = ∅)
2625necon3bii 2978 . . . . . . . . . . . . 13 ((𝐹𝑥) ≠ ∅ ↔ (dom 𝐹𝑥) ≠ ∅)
2724, 26sylibr 234 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ≠ ∅)
287elin2d 4171 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Clsd‘𝐾))
29 cnclima 23162 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ (Clsd‘𝐾)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
306, 28, 29syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
314, 5, 10, 27, 30connclo 23309 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝐽)
324, 13cnf 23140 . . . . . . . . . . . 12 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
33 fdm 6700 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → dom 𝐹 = 𝐽)
346, 32, 333syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝐽)
35 fof 6775 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
36 fdm 6700 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
3715, 35, 363syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝑋)
3831, 34, 373eqtr2d 2771 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝑋)
3938imaeq2d 6034 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = (𝐹𝑋))
40 foimacnv 6820 . . . . . . . . . 10 ((𝐹:𝑋onto𝑌𝑥𝑌) → (𝐹 “ (𝐹𝑥)) = 𝑥)
4115, 14, 40syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
42 foima 6780 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
4315, 42syl 17 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑋) = 𝑌)
4439, 41, 433eqtr3d 2773 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 = 𝑌)
4544expr 456 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 ≠ ∅ → 𝑥 = 𝑌))
463, 45biimtrrid 243 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (¬ 𝑥 = ∅ → 𝑥 = 𝑌))
4746orrd 863 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 = ∅ ∨ 𝑥 = 𝑌))
48 vex 3454 . . . . . 6 𝑥 ∈ V
4948elpr 4617 . . . . 5 (𝑥 ∈ {∅, 𝑌} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝑌))
5047, 49sylibr 234 . . . 4 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → 𝑥 ∈ {∅, 𝑌})
5150ex 412 . . 3 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) → 𝑥 ∈ {∅, 𝑌}))
5251ssrdv 3955 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌})
5313isconn2 23308 . 2 (𝐾 ∈ Conn ↔ (𝐾 ∈ Top ∧ (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌}))
542, 52, 53sylanbrc 583 1 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cin 3916  wss 3917  c0 4299  {cpr 4594   cuni 4874  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  Topctop 22787  Clsdccld 22910   Cn ccn 23118  Conncconn 23305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-topon 22805  df-cld 22913  df-cn 23121  df-conn 23306
This theorem is referenced by:  connima  23319  conncn  23320  qtopconn  23603  connhmph  23683  ivthALT  36330
  Copyright terms: Public domain W3C validator