MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconn Structured version   Visualization version   GIF version

Theorem cnconn 23451
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
cnconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnconn ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)

Proof of Theorem cnconn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop2 23270 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1135 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 df-ne 2947 . . . . . . 7 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
4 eqid 2740 . . . . . . . . . . . 12 𝐽 = 𝐽
5 simpl1 1191 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐽 ∈ Conn)
6 simpl3 1193 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹 ∈ (𝐽 Cn 𝐾))
7 simprl 770 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)))
87elin1d 4227 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝐾)
9 cnima 23294 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
106, 8, 9syl2anc 583 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ 𝐽)
11 elssuni 4961 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐾𝑥 𝐾)
128, 11syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 𝐾)
13 cnconn.2 . . . . . . . . . . . . . . . . . 18 𝑌 = 𝐾
1412, 13sseqtrrdi 4060 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝑌)
15 simpl2 1192 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹:𝑋onto𝑌)
16 forn 6837 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → ran 𝐹 = 𝑌)
1814, 17sseqtrrd 4050 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ ran 𝐹)
19 df-rn 5711 . . . . . . . . . . . . . . . 16 ran 𝐹 = dom 𝐹
2018, 19sseqtrdi 4059 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ dom 𝐹)
21 sseqin2 4244 . . . . . . . . . . . . . . 15 (𝑥 ⊆ dom 𝐹 ↔ (dom 𝐹𝑥) = 𝑥)
2220, 21sylib 218 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) = 𝑥)
23 simprr 772 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
2422, 23eqnetrd 3014 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) ≠ ∅)
25 imadisj 6109 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ ↔ (dom 𝐹𝑥) = ∅)
2625necon3bii 2999 . . . . . . . . . . . . 13 ((𝐹𝑥) ≠ ∅ ↔ (dom 𝐹𝑥) ≠ ∅)
2724, 26sylibr 234 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ≠ ∅)
287elin2d 4228 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Clsd‘𝐾))
29 cnclima 23297 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ (Clsd‘𝐾)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
306, 28, 29syl2anc 583 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
314, 5, 10, 27, 30connclo 23444 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝐽)
324, 13cnf 23275 . . . . . . . . . . . 12 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
33 fdm 6756 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → dom 𝐹 = 𝐽)
346, 32, 333syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝐽)
35 fof 6834 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
36 fdm 6756 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
3715, 35, 363syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝑋)
3831, 34, 373eqtr2d 2786 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝑋)
3938imaeq2d 6089 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = (𝐹𝑋))
40 foimacnv 6879 . . . . . . . . . 10 ((𝐹:𝑋onto𝑌𝑥𝑌) → (𝐹 “ (𝐹𝑥)) = 𝑥)
4115, 14, 40syl2anc 583 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
42 foima 6839 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
4315, 42syl 17 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑋) = 𝑌)
4439, 41, 433eqtr3d 2788 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 = 𝑌)
4544expr 456 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 ≠ ∅ → 𝑥 = 𝑌))
463, 45biimtrrid 243 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (¬ 𝑥 = ∅ → 𝑥 = 𝑌))
4746orrd 862 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 = ∅ ∨ 𝑥 = 𝑌))
48 vex 3492 . . . . . 6 𝑥 ∈ V
4948elpr 4672 . . . . 5 (𝑥 ∈ {∅, 𝑌} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝑌))
5047, 49sylibr 234 . . . 4 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → 𝑥 ∈ {∅, 𝑌})
5150ex 412 . . 3 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) → 𝑥 ∈ {∅, 𝑌}))
5251ssrdv 4014 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌})
5313isconn2 23443 . 2 (𝐾 ∈ Conn ↔ (𝐾 ∈ Top ∧ (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌}))
542, 52, 53sylanbrc 582 1 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cin 3975  wss 3976  c0 4352  {cpr 4650   cuni 4931  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  ontowfo 6571  cfv 6573  (class class class)co 7448  Topctop 22920  Clsdccld 23045   Cn ccn 23253  Conncconn 23440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cld 23048  df-cn 23256  df-conn 23441
This theorem is referenced by:  connima  23454  conncn  23455  qtopconn  23738  connhmph  23818  ivthALT  36301
  Copyright terms: Public domain W3C validator