MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconn Structured version   Visualization version   GIF version

Theorem cnconn 22481
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
cnconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnconn ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)

Proof of Theorem cnconn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop2 22300 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1133 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 df-ne 2943 . . . . . . 7 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
4 eqid 2738 . . . . . . . . . . . 12 𝐽 = 𝐽
5 simpl1 1189 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐽 ∈ Conn)
6 simpl3 1191 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹 ∈ (𝐽 Cn 𝐾))
7 simprl 767 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)))
87elin1d 4128 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝐾)
9 cnima 22324 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
106, 8, 9syl2anc 583 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ 𝐽)
11 elssuni 4868 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐾𝑥 𝐾)
128, 11syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 𝐾)
13 cnconn.2 . . . . . . . . . . . . . . . . . 18 𝑌 = 𝐾
1412, 13sseqtrrdi 3968 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝑌)
15 simpl2 1190 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹:𝑋onto𝑌)
16 forn 6675 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → ran 𝐹 = 𝑌)
1814, 17sseqtrrd 3958 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ ran 𝐹)
19 df-rn 5591 . . . . . . . . . . . . . . . 16 ran 𝐹 = dom 𝐹
2018, 19sseqtrdi 3967 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ dom 𝐹)
21 sseqin2 4146 . . . . . . . . . . . . . . 15 (𝑥 ⊆ dom 𝐹 ↔ (dom 𝐹𝑥) = 𝑥)
2220, 21sylib 217 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) = 𝑥)
23 simprr 769 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
2422, 23eqnetrd 3010 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) ≠ ∅)
25 imadisj 5977 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ ↔ (dom 𝐹𝑥) = ∅)
2625necon3bii 2995 . . . . . . . . . . . . 13 ((𝐹𝑥) ≠ ∅ ↔ (dom 𝐹𝑥) ≠ ∅)
2724, 26sylibr 233 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ≠ ∅)
287elin2d 4129 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Clsd‘𝐾))
29 cnclima 22327 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ (Clsd‘𝐾)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
306, 28, 29syl2anc 583 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
314, 5, 10, 27, 30connclo 22474 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝐽)
324, 13cnf 22305 . . . . . . . . . . . 12 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
33 fdm 6593 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → dom 𝐹 = 𝐽)
346, 32, 333syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝐽)
35 fof 6672 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
36 fdm 6593 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
3715, 35, 363syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝑋)
3831, 34, 373eqtr2d 2784 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝑋)
3938imaeq2d 5958 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = (𝐹𝑋))
40 foimacnv 6717 . . . . . . . . . 10 ((𝐹:𝑋onto𝑌𝑥𝑌) → (𝐹 “ (𝐹𝑥)) = 𝑥)
4115, 14, 40syl2anc 583 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
42 foima 6677 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
4315, 42syl 17 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑋) = 𝑌)
4439, 41, 433eqtr3d 2786 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 = 𝑌)
4544expr 456 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 ≠ ∅ → 𝑥 = 𝑌))
463, 45syl5bir 242 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (¬ 𝑥 = ∅ → 𝑥 = 𝑌))
4746orrd 859 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 = ∅ ∨ 𝑥 = 𝑌))
48 vex 3426 . . . . . 6 𝑥 ∈ V
4948elpr 4581 . . . . 5 (𝑥 ∈ {∅, 𝑌} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝑌))
5047, 49sylibr 233 . . . 4 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → 𝑥 ∈ {∅, 𝑌})
5150ex 412 . . 3 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) → 𝑥 ∈ {∅, 𝑌}))
5251ssrdv 3923 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌})
5313isconn2 22473 . 2 (𝐾 ∈ Conn ↔ (𝐾 ∈ Top ∧ (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌}))
542, 52, 53sylanbrc 582 1 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  c0 4253  {cpr 4560   cuni 4836  ccnv 5579  dom cdm 5580  ran crn 5581  cima 5583  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Topctop 21950  Clsdccld 22075   Cn ccn 22283  Conncconn 22470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-cld 22078  df-cn 22286  df-conn 22471
This theorem is referenced by:  connima  22484  conncn  22485  qtopconn  22768  connhmph  22848  ivthALT  34451
  Copyright terms: Public domain W3C validator