MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconn Structured version   Visualization version   GIF version

Theorem cnconn 23337
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
cnconn.2 𝑌 = 𝐾
Assertion
Ref Expression
cnconn ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)

Proof of Theorem cnconn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntop2 23156 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
213ad2ant3 1135 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 df-ne 2929 . . . . . . 7 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
4 eqid 2731 . . . . . . . . . . . 12 𝐽 = 𝐽
5 simpl1 1192 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐽 ∈ Conn)
6 simpl3 1194 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹 ∈ (𝐽 Cn 𝐾))
7 simprl 770 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)))
87elin1d 4151 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝐾)
9 cnima 23180 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
106, 8, 9syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ 𝐽)
11 elssuni 4887 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐾𝑥 𝐾)
128, 11syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 𝐾)
13 cnconn.2 . . . . . . . . . . . . . . . . . 18 𝑌 = 𝐾
1412, 13sseqtrrdi 3971 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥𝑌)
15 simpl2 1193 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝐹:𝑋onto𝑌)
16 forn 6738 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋onto𝑌 → ran 𝐹 = 𝑌)
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → ran 𝐹 = 𝑌)
1814, 17sseqtrrd 3967 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ ran 𝐹)
19 df-rn 5625 . . . . . . . . . . . . . . . 16 ran 𝐹 = dom 𝐹
2018, 19sseqtrdi 3970 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ⊆ dom 𝐹)
21 sseqin2 4170 . . . . . . . . . . . . . . 15 (𝑥 ⊆ dom 𝐹 ↔ (dom 𝐹𝑥) = 𝑥)
2220, 21sylib 218 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) = 𝑥)
23 simprr 772 . . . . . . . . . . . . . 14 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ≠ ∅)
2422, 23eqnetrd 2995 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (dom 𝐹𝑥) ≠ ∅)
25 imadisj 6028 . . . . . . . . . . . . . 14 ((𝐹𝑥) = ∅ ↔ (dom 𝐹𝑥) = ∅)
2625necon3bii 2980 . . . . . . . . . . . . 13 ((𝐹𝑥) ≠ ∅ ↔ (dom 𝐹𝑥) ≠ ∅)
2724, 26sylibr 234 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ≠ ∅)
287elin2d 4152 . . . . . . . . . . . . 13 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 ∈ (Clsd‘𝐾))
29 cnclima 23183 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ (Clsd‘𝐾)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
306, 28, 29syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) ∈ (Clsd‘𝐽))
314, 5, 10, 27, 30connclo 23330 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝐽)
324, 13cnf 23161 . . . . . . . . . . . 12 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽𝑌)
33 fdm 6660 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → dom 𝐹 = 𝐽)
346, 32, 333syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝐽)
35 fof 6735 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
36 fdm 6660 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
3715, 35, 363syl 18 . . . . . . . . . . 11 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → dom 𝐹 = 𝑋)
3831, 34, 373eqtr2d 2772 . . . . . . . . . 10 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑥) = 𝑋)
3938imaeq2d 6008 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = (𝐹𝑋))
40 foimacnv 6780 . . . . . . . . . 10 ((𝐹:𝑋onto𝑌𝑥𝑌) → (𝐹 “ (𝐹𝑥)) = 𝑥)
4115, 14, 40syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹 “ (𝐹𝑥)) = 𝑥)
42 foima 6740 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → (𝐹𝑋) = 𝑌)
4315, 42syl 17 . . . . . . . . 9 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → (𝐹𝑋) = 𝑌)
4439, 41, 433eqtr3d 2774 . . . . . . . 8 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) ∧ 𝑥 ≠ ∅)) → 𝑥 = 𝑌)
4544expr 456 . . . . . . 7 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 ≠ ∅ → 𝑥 = 𝑌))
463, 45biimtrrid 243 . . . . . 6 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (¬ 𝑥 = ∅ → 𝑥 = 𝑌))
4746orrd 863 . . . . 5 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → (𝑥 = ∅ ∨ 𝑥 = 𝑌))
48 vex 3440 . . . . . 6 𝑥 ∈ V
4948elpr 4598 . . . . 5 (𝑥 ∈ {∅, 𝑌} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝑌))
5047, 49sylibr 234 . . . 4 (((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾))) → 𝑥 ∈ {∅, 𝑌})
5150ex 412 . . 3 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ (𝐾 ∩ (Clsd‘𝐾)) → 𝑥 ∈ {∅, 𝑌}))
5251ssrdv 3935 . 2 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌})
5313isconn2 23329 . 2 (𝐾 ∈ Conn ↔ (𝐾 ∈ Top ∧ (𝐾 ∩ (Clsd‘𝐾)) ⊆ {∅, 𝑌}))
542, 52, 53sylanbrc 583 1 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3896  wss 3897  c0 4280  {cpr 4575   cuni 4856  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  Topctop 22808  Clsdccld 22931   Cn ccn 23139  Conncconn 23326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-top 22809  df-topon 22826  df-cld 22934  df-cn 23142  df-conn 23327
This theorem is referenced by:  connima  23340  conncn  23341  qtopconn  23624  connhmph  23704  ivthALT  36379
  Copyright terms: Public domain W3C validator