![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvex | Structured version Visualization version GIF version |
Description: If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.) |
Ref | Expression |
---|---|
cosscnvex | ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg 7954 | . 2 ⊢ (𝐴 ∈ 𝑉 → ◡𝐴 ∈ V) | |
2 | cossex 38415 | . 2 ⊢ (◡𝐴 ∈ V → ≀ ◡𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3481 ◡ccnv 5692 ≀ ccoss 38176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-coss 38407 |
This theorem is referenced by: eldisjsdisj 38723 |
Copyright terms: Public domain | W3C validator |